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Abstract

Policymakers often seek to reduce resource consumption but face constraints that
preclude the use of prices or other first-best instruments. This paper studies the design
and effectiveness of an alternative approach: payments for voluntary conservation.
We offered payments for reduced groundwater use among farmers in Gujarat, India in
a randomized controlled trial. Price incentives work: The program reduced irrigation
time by 22 percent. Conservation payments are a practical policy tool in this setting:
The program saved energy at a per-unit cost comparable to the electric utility’s supply
costs. Contract design greatly affects cost-effectiveness: More stringent benchmark
values (against which conservation is measured and rewarded) halved the average
cost of conservation.
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1 Introduction

Across a wide range of settings, natural resources are overused, degrading the quality
and quantity of the resources themselves and harming others through negative external-
ities. Policymakers trying to solve these problems often seek to reduce resource use but
face constraints that rule out textbook “first-best” policy instruments. Simple pricing or
corrective taxes may be politically untenable (Pai and Strack, 2022), while creating new
property rights or markets may be prohibitively costly (Libecap, 2014). Common alterna-
tives, such as rationing or subsidies for resource-saving technologies, tend to be inefficient
or expensive. There is a need for alternative “second-best” tools that can achieve conser-
vation goals while operating within real-world political and administrative constraints.

One alternative gaining wider use is payments for voluntary conservation, in which
a government or other principal offers payments to users who reduce their resource con-
sumption (Wolak, 2006; Jayachandran et al., 2017; Aspelund and Russo, 2025). Such a
program can replicate the marginal incentives of a Pigouvian tax, at least for some users,
so it may achieve similar outcomes. But because it relies on rewards rather than penalties,
it reverses the distributional consequences, potentially relaxing policy constraints. How
well do conservation payment programs work? How cost-effective are they? And how
can they best be designed?

This paper studies the design and effectiveness of a conservation payment program.
We experimentally evaluate a program of payments for groundwater conservation among
farmers in Gujarat, India – a setting where marginal incentives to conserve are minimal,
yet the consequences of overuse are severe. Groundwater is an essential resource for ir-
rigation and drinking water worldwide, but unregulated extraction in many regions has
led to depletion, increasing poverty and conflict while reducing farm income, wealth,
and employment (Sekhri, 2014; Blakeslee et al., 2020). The problem is compounded by
electricity pricing: power used to pump groundwater is often free, flat-rate, or heavily
subsidized, exacerbating depletion while straining public utilities and degrading elec-
tricity service (Burgess et al., 2020). Yet high energy subsidies are often seen as valuable
means of redistribution; in India, reform efforts are often met with political resistance and
public protest (Sovacool, 2017).

Our program installed meters and offered payments for reduced groundwater pump-
ing during the main irrigation season of 2022-23 within a randomized controlled trial.
The basic design is to (1) meter the groundwater pumps of all study participants, (2) offer
randomly selected participants payments for reduced pumping relative to a “benchmark”
quantity, and (3) compare groundwater consumption by these farmers to that of the rest
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of the sample. The program was implemented in collaboration with the Aga Khan Rural
Support Programme (India), a trusted organization with a long history in the study area.

We first ask how this program affected groundwater and electricity consumption. We
find that payments for groundwater conservation work. Farmers offered conservation
payments irrigated for 22 percent fewer hours than farmers assigned to the control group,
with a 95 percent confidence interval of (12, 33) percent. The effects are similar when we
convert irrigation time to energy use—we estimate that treatment farmers reduced elec-
tricity consumption by 140 kilowatt-hours (kWh) per month relative to the control-group
mean of 611 kWh. Treatment effects increased over the three months of the intervention,
suggesting a durable response. Higher prices (relative to lower prices) reduced electricity
use but not pumping duration, suggesting that farmers with more powerful pumps are
more price-sensitive.

Then, we assess the cost-effectiveness of payments for groundwater conservation from
the perspective of an electric utility – the natural choice to implement a similar program
at scale. At the margin, is it cheaper for a utility to increase supply or to reduce demand
through conservation payments? We find that our program is cost-competitive with typ-
ical costs of electricity procurement in northwestern India. Our program spent 6.1 INR in
total conservation payments for every kWh of energy saved, a cost that is slightly greater
than the average costs of electricity provision for the utility in our study area (and may
be lower than marginal costs) and slightly lower than costs in a nearby state. Consider-
ing the additional social costs of groundwater depletion and of emissions from electricity
generation, it appears likely that paying farmers to reduce their groundwater irrigation
would bring greater social benefits than purchasing more electricity and distributing it
for free.

Finally, we study the optimal design of contracts in our setting. In particular, we
ask how to choose benchmarks – the values against which conservation is measured and
rewarded. Benchmarks can greatly influence program cost-effectiveness, because they
determine payment expenditures and can affect conservation behavior. Often a natu-
ral choice of benchmark is a measure of historical resource use, since it may be a good
predictor of resource use absent the program. But a natural choice is not necessarily a
cost-effective choice. We show theoretically that cost-effective benchmarks are generally
different from either historical use or the predicted counterfactual. We then show empir-
ically in our setting that more stringent benchmarks greatly improve cost-effectiveness.

More stringent benchmarks are cost-effective for two reasons. First, they reduce infra-
marginal payments – rewards for resource units that never would have been consumed
anyway. We show in our setting that inframarginal payments are large but would have
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been even larger had we used historical consumption as benchmarks (instead of target-
ing stringency on expected variance). Second, more stringent benchmarks can actually
induce more conservation. In our treatment group, we also cross-randomized partici-
pants into high- and low-benchmark groups, which separated benchmarks by about 30
percent. Many participants responded to lower benchmarks by conserving more, yield-
ing a seemingly “free lunch” of both lower costs and greater benefits. Overall, the average
cost of conservation in the low-benchmark group was less than half the cost in the high-
benchmark group.

One central contribution of this paper is to provide experimental evidence that marginal
prices can reduce groundwater irrigation. The basic idea is core to microeconomic the-
ory, but empirical evidence has been limited because there have been so few real-world
examples to study. We build most directly upon two non-randomized pilots of similar
programs run by electric utilities in India; Fishman et al. (2016) found no effects in Gu-
jarat, while Mitra et al. (2023) found water use reductions in Punjab. By working instead
with a local non-governmental organization, we are able to randomize participants, di-
rectly measure pumping at the individual level, and trace the demand curve to prices
beyond what utilities have been willing to test. In the most closely related randomized
study, Chakravorty et al. (2023) induce a volumetric price using an encouragement de-
sign; they do not find effects on water use, which may be because relatively few farmers
adopted the price.1

Observational research on irrigation prices has faced two key challenges: finding ex-
ogenous variation in groundwater prices, and reliably measuring water use. Early stud-
ies in the U.S. used proxies for pumping costs and relied on self-reported water use
(Gonzalez-Alvarez et al., 2006; Hendricks and Peterson, 2012; Pfeiffer and Lin, 2014). A
few more recent papers study the introduction of explicit prices. One in West Bengal uses
self-reports of water use and finds inconclusive results (Meenakshi et al., 2013). Three in
the U.S. are able to observe meter readings from individual wells and find reductions in
water use (Smith et al., 2017; Bruno and Jessoe, 2021; Bruno et al., 2024). Introducing ran-
domized variation allows us to more cleanly isolate causal effects, while installing meters
allows us to directly observe irrigation behavior in a setting beyond the western U.S.

Our project also contributes to the broader literature on payments for environmental
services (PES). Our intervention has the same basic structure as hundreds of programs
designed to incentivize the provision of environmental services, ranging from increased
forest or wetland cover, to reduced input intensity in agriculture.2 Despite their preva-

1They also show that a water-saving technology saves water only in regions with marginal prices; al-
though this technology is randomized, the heterogeneity is not.

2For example, in the United States alone, payments are available to farmers for actions to mitigate flood
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lence, rigorous evaluation of these types of programs has been limited (see Pattanayak
et al. (2010) and Börner et al. (2017) for reviews). Most existing evaluations use covariate
matching and are unable to address selection bias, a particular concern for a voluntary
program. The exceptions are four randomized controlled trials of programs to improve
land management in Colombia (Pagiola et al., 2016), reduce deforestation in Uganda (Jay-
achandran et al., 2017), encourage tree planting in Malawi (Jack and Cardona Santos,
2017), and reduce crop burning in India (Jack et al., 2023). Our study shows that PES
models are feasible and can be effective in a novel context: reducing energy and water
use in agriculture.

Finally, we contribute to literature connecting the price response of electricity con-
sumption in developing countries to policy decisions about energy-sector investment and
reform. Experimental and quasi-experimental studies are still limited, but a few have
been conducted recently on rural households in Columbia (McRae, 2015), urban house-
holds in South Africa (Jack and Smith, 2016), and new grid connections in Kenya (Lee
et al., 2018).

2 A Conceptual Model of Conservation Payments

We study a program to incentivize resource conservation that uses the following contract.
A principal offers a nonnegative payment 𝑦(𝑞) to an agent that depends on the agent’s
resource consumption 𝑞. The contract specifies three parameters, a price 𝑝, a benchmark
𝑏, and a maximum payment 𝑦̄. It pays out 𝑝 for every unit of resource forgone, measured
relative to the benchmark:

𝑦(𝑞) =


0 𝑞 ≥ 𝑏

𝑝 · (𝑏 − 𝑞) 𝑏 > 𝑞 > 𝑏 − 𝑦̄

𝑝

𝑦̄ 𝑞 ≤ 𝑏 − 𝑦̄

𝑝

If consumption exceeds the benchmark, the payment is zero. If consumption is less than
the benchmark, the payment equals the price times the difference between quantity con-
sumed and the benchmark. If the maximum payment is reached, further conservation
does not increase the payment. Figure 1 illustrates the budget set of this contract.

and wildfire risks, provide habitat for endangered species, salinity mitigation, and water and energy con-
servation.
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2.1 How do conservation payments compare with a per-unit tax?

The conservation payments contract imposes the same marginal incentives, at least over
a certain range of consumption. But its structure also differs in two important ways. First,
the contract effectively includes a lump-sum transfer; for agents who consume less than
the benchmark (and below the maximum payment), the contract is equivalent to a linear
tax −𝑝𝑞 plus a transfer 𝑝𝑏. Second, this tax applies only within a certain range. Agents
who consume more than the benchmark, or less than the maximum payment, face no
marginal incentives. Two kinks in the budget set ensure the payment is nonnegative and
below the maximum but complicate the agents’ response.

2.2 How do agents respond to conservation payments?

Not all agents change their behavior in response to conservation payments. Because the
contract provides a linear incentive only for quantities below the benchmark, agents who
would have consumed above the benchmark without the program may continue to con-
sume the same quantity. This differs from a per-unit tax, in which all agents are marginal
to the incentive, in the sense that any positive quantity consumed is subject to a per-unit
price. Under conservation payments, some agents are marginal, but not all.

To see this, Figure 1 plots quasi-linear indifference curves over quantity consumed
(including both private benefits and costs) and conservation payments for two example
agents. Without conservation payments, the budget set is flat and coincides with the x-
axis; with conservation payments, the budget set is piecewise linear. Agent A changes
her resource consumption in response to the conservation payments program. Her indif-
ference curves are tangent to the x-axis at 𝑞𝐴0 and tangent to the conservation payments
budget set at 𝑞𝐴1 , so her resource consumption is lower under conservation payments
relative to the counterfactual. Agent B does not change his resource consumption when
offered conservation payments; his indifference curves are tangent to both budget sets at
𝑞𝐵.

2.3 How does the benchmark affect conservation?

The choice of benchmark can affect resource consumption through two possibly opposing
channels: the extensive margin and the intensive margin.

First, the extensive margin: More lenient (i.e., higher) benchmarks induce more agents
to respond to the program and conserve the resource at all. If the benchmark is sufficiently
high, all agents respond – everyone optimizes on the sloped segment of the budget con-
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straint and receive positive payments. If the benchmark is sufficiently low, no agents re-
spond – the payments are too far away to be worth pursuing. The program is unattractive
if agents must complete too much uncompensated conservation before payments kick in,
or if the available range of compensated conservation (above zero or the maximum pay-
ment) is too small.

In Figure 1, relaxing the benchmark (i.e., raising it) would be represented by a parallel
shift outward in the budget constraint. For any well-behaved set of indifference curves,
the maximum utility reachable on the sloped segment is greater after it is shifted out-
ward. Any agent already on the sloped segment will continue to optimize on the sloped
segment, and some agents on the flat segment will move to the sloped segment.

Second, the intensive margin: Conditional on conserving at all, more lenient bench-
marks may lead agents to increase consumption – to conserve less than they otherwise
would. On the intensive margin, relaxing the benchmark is a pure income effect, so if
the resource is a normal good, the agent increases both resource consumption and the
payment.3 A similar effect may also operate through behavioral channels. More stringent
(i.e., lower) benchmarks may increase conservation if agents put more weight on the cash
rewards than on the costs of forgone resource consumption, or if they interpret bench-
marks as containing information about scientific recommendations or social norms.4

Because there are plausible effects in opposite directions, the net effect of benchmarks
on conservation is theoretically ambiguous. Appendix A presents a slightly more formal
analytical model with proofs of these effects for two broad classes of utility functions.

2.4 How does the benchmark affect program cost-effectiveness?

We can define the cost-effectiveness of the program to the principal as the average expen-
diture on conservation payments per unit of conservation achieved by the program. Here,
conservation is measured relative to the counterfactual without the program (“causal con-
servation”), not relative to the benchmark (“rewarded conservation”).

Benchmarks affect cost-effectiveness in two ways. First, benchmarks mechanically
affect payment expenditures. More lenient benchmarks require rewarding more units
of conservation, regardless of whether those units would have been consumed anyway.
Benchmarks set higher than counterfactual consumption require inframarginal (or “non-
additional”) payments. Benchmarks set lower than counterfactual consumption may

3Of course, an increase in consumption is not the only possibility. If utility is quasilinear, the benchmark
does not affect the quantity because there are no income effects, and if the resource is an inferior good,
raising the benchmark leads the agent to consume less of it.

4Our program made no such claims, but participants still could make these interpretations.
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achieve some units of conservation for free. This effect favors more stringent benchmarks.
Second, benchmarks affect the conservation achieved by the program, as described

above. Putting all effects together, more lenient benchmarks induce more agents to con-
serve but increase inframarginal payments. More stringent benchmarks lead some agents
to “give up” conserving, but they reduce payment expenditures and may induce greater
conservation through income and/or behavioral effects.

3 Study Setting and Experimental Design

3.1 Enrollment and Sample

We implemented a randomized controlled trial among groundwater-irrigating farmers in
Saurashtra, a water-scarce region of Gujarat state, India. The study villages are located
in the inland districts of Rajkot, Surendranagar, and Morbi (shown in Figure 2). Ground-
water depletion is a concern within the study area, and nearby areas are marked by some
of the most rapid groundwater depletion rates both within India and globally (Jasechko
et al., 2024). While the primary source of employment in the study area is in agriculture
(Registrar General and Census Commissioner of India (2001)), there are also a number of
industrial occupation opportunities.

We recruited our sample using lists of villagers currently or formerly participating in
agricultural outreach programs with our implementing partner, the Aga Khan Rural Sup-
port Program (AKRSP), and its sister agency the Aga Khan Foundation (AKF). The out-
reach programs included Better Cotton Initiative, which aims to improve the sustainabil-
ity of the global cotton supply; Farmer Producer Groups, which aim to empower farmers
in marketing produce and procuring high-quality inputs; and various micro-irrigation
subsidy and support programs. Surveyors approached farmers on these lists, as well as
any farmers who shared water with those on the lists, to determine eligibility.

In order to be eligible for the study, the household’s primary agricultural decision-
maker (PAD) was required to meet the following criteria: Planted crops and irrigated
primarily using groundwater in the previous Rabi season; planned to irrigate during
the coming Rabi season; had no more than two active wells on their primary farm; had
electric-powered pumps on all active wells; did not have multiple pump starters in use
on any active well; and did not belong to a network of sharing irrigation sources among
groups of farmers larger than four.

We enrolled a total of 1,347 farmers who met the eligibility criteria, completed a base-
line survey, and consented to the full study (including installation of an hours of use
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meter on the pumpsets used to irrigate their primary farm). Of these, 236 attrited prior to
randomization, and another 122 prior to the final data collection visit, leaving an analysis
sample of 989 farmers.

3.2 Hours-of-Use Meters

For all participants, an hours-of-use meter was installed on the electric pump starter of
their primary irrigation source or sources.5 The meter measures the cumulative time, to
tenths of an hour, that the pump has been in operation. The difference in values displayed
on the meter at two different points in time allows us to measure a farmer’s total irrigation
time during that period. Meters were installed in Fall of 2022, and were read monthly by
survey staff from December 2022 through March 2023 (Figure 4).

Participants were able to remove the meters – we found through piloting that this
was key to broad acceptability.6 However, removing a meter would reduce data quality
and could allow a participant to obtain higher conservation payments by reducing the
recorded irrigation time. We therefore implemented several practices to both detect and
discourage removal. We ensured easy detection by attaching custom stickers to the easi-
est disconnection points such that disconnection would tear the sticker. If meter removal
or tampering was detected at any meter-reading visit, participants were immediately dis-
qualified from receiving further payments. We explicitly requested participants to keep
the meter installed through the end of the irrigation season, and we rewarded participants
with 100 INR per meter for keeping their meters installed without tampering through the
final meter reading.

Throughout the enrollment and meter-installation process, we informed all partici-
pants that some of them would be offered a new program that involved cash payments
in exchange for water conservation, and that participants in this new program would be
chosen by lottery. Participants were informed of their treatment assignment at the end of
the first meter reading visit in December 2022, so we were able to collect one month of
irrigation data before participants learned of their treatment status.

5Farmers in our sample had up to two wells on their primary farm, and therefore up to two metered
pump starters.

6We used hours-of-use meters because in piloting activities they performed better and were more easily
accepted than water or electricity meters. Water meters were expensive, prone to clogging with debris, re-
quired custom hardware for each farmer due to non-standardized irrigation equipment, reduced irrigation
flexibility, often raised water pressure and therefore pumping costs, and were easy to disconnect. Electric-
ity meters raised suspicion that our team was working with the local electric utility; hours-of-use meters
are functionally nearly identical but avoided such suspicion. Throughout enrollment and meter installa-
tion, we characterized our project as a research study about how to encourage water conservation, and we
emphasized that the individual readings would not be shared with any utility or government agency.
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3.3 Experimental design

The experiment had two overarching treatment arms: conservation payment farmers were
eligible to receive payments for conserving groundwater below a benchmark, whereas
control farmers received no such incentives. Figure 3 illustrates our experimental design.

Treatment: Conservation payments Participants in the treatment (“Conservation Cred-
its”) group were offered payments for conserving water during the following three months
of the winter growing season, known as the rabi season: January to March. Rabi is the
peak irrigation season in the region; as there is typically no rainfall, agriculture is en-
tirely dependent on irrigation. At each meter reading, participants were informed of their
benchmark for the following month, and the payment for the previous month was calcu-
lated. Payments were awarded at a fixed rate for consuming fewer hours of irrigation
than the monthly benchmark, according the formula:

Payment𝑖𝑡 = min
(
max

(
0, price𝑖 × ((hours benchmark)𝑖𝑡 − (hours consumed)𝑖𝑡)

)
, (max payment)𝑖

)
(1)

where price𝑖 is the per-hour incentive rate, (hours benchmark)𝑖𝑡 is an individual-month-
specific benchmark, (hours consumed)𝑖𝑡 is the monthly meter reading, and (max payment)𝑖
is the maximum monthly payment.7 Payments were pro-rated in the case that meter read-
ings were not exactly 31 days apart. The payments were later disbursed via electronic
bank transfer.

Sub-treatment arms Within the overall treatment group, we randomly assigned partic-
ipants to one of four sub-treatment arms. These arms differ along two dimensions: the
per-hour incentive rate and the benchmark. Individuals assigned a high price received
100 INR (1.20 USD) per hour conserved, and those assigned a low price received 50 INR
(0.60 USD) per hour conserved. The prices were chosen to encompass realistic ranges of
groundwater prices that a policymaker might wish to set. The low price represents the
approximate cost of electricity provision for the median farmer and is similar to the price
offered in a program in Punjab (Mitra et al., 2023).8 The high price allows us to study the

7The maximum monthly payment was 4,000 INR for farmers with one well and 6,000 INR for farmers
with two wells. These maximums were not pro-rated.

8A price of 50 INR per hour is approximately equal to the unsubsidized average cost of electricity sup-
ply in Gujarat for the median pumpset in our sample. That is: (5.4 INR/kWh average cost of electricity
provision in Gujarat) * (5 hp pump brake power) / (40% typical motor efficiency) * (0.75 kW/HP conver-
sion factor) = 50 INR/hr. The Punjab program offered an incentive of 4.0 INR/kWh, which translates to
different per-hour prices for different farmers depending on pump power, but would be approximately 37
INR per hour for the median pumpset in our sample. For more details on this calculation see Section 4.2
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response to prices well beyond those piloted by electric utilities in India to date, which
might be justified by the additional social costs of groundwater depletion and electricity
generation.

Individualized benchmarks were set using a formula that sought to optimize the ex-
pected number of marginal farmers as a function of first-month pumping data (i.e., after
meter installation but before treatment assignment was revealed to surveyors or farmers).
Individuals assigned the high and low benchmark received 115% and 85%, respectively, of
their formula-based benchmark, rounded to the nearest 10-hour increment.

Control Participants in the Control group were informed that they were not selected for
the new payment program but still had their meters read monthly for four months and
were offered the reward for keeping the meters installed for the duration of the project.

3.4 Randomization

Randomization was conducted at the level of farmer-sharing group: that is, the set of
farmers who mentioned at the baseline survey that they used any common irrigation
sources. By randomizing at the sharing group level, we minimize the possibility that
conservation payments will spillover to control farmers.

Randomization was stratified by forecasted hours of irrigation and size of water-
sharing group. Specifically, the final sample of water-sharing groups was ordered first
by number of farmers, and second by forecasted hours of irrigation.9 Groups were ran-
domly allocated in equal proportion between the control and treatment arms using a
pseudo-random number generator (Stata software) within each ordered pair. Pairs were
then combined into ordered cells of eight farmer-sharing groups, within which the four
groups allocated to the treatment arm were randomly allocated in equal proportion be-
tween the four sub-treatment arms.

4 Data and Summary Statistics

4.1 Data Sources

Our analysis rests on data from two primary sources: a baseline survey and meter read-
ing data. First, we conducted a baseline survey with both self-reported and field mea-

and Table 4.
9Forecasted hours of irrigation were created using a random forest using baseline survey data and geo-

logical mapping data. Forecasts were fit using a sample of farmers in Saurashtra from a previous project.
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surement components prior to randomizing participants into treatments. Self-reported
data include demographic and socioeconomic characteristics, such as landholding size
and household size; cropping, crop management, and irrigation decisions in the previous
year; the power of the primary pumpsets; and water conservation strategies and atti-
tudes. Field measurements include the precise geolocation and depth-to-water of each
well on the participant’s largest farm where measurement is safe and feasible. We also
collect the names and contact details of any farmers who use water from the primary farm
or whose water is used on the primary farm in order to sort our sample into water-sharing
groups consisting of all farmers who are connected through water sharing relationships.
Baseline data was collected electronically through tablet surveys.

Second, we directly measure groundwater pumping for all study participants using
hours-of-use meters installed on the pump starter of each participant’s primary irrigation
source.10 Surveyors recorded meter readings each month using a digital tablet survey.
Meter data quality was assured through random audits, in which a research associate
compared the digitally recorded meter readings with dated, geo-located photographs of
the meter dial included on the tablet survey.

We combine these with two secondary data sources: hydrogeology data from digi-
tized “Groundwater Prospects Maps” created by the Government of India and proxies
of agricultural yields derived from satellite data. Specifically, we first supplement our
baseline data with an extensive set of hydro-geological features from the “Groundwater
Prospects Maps” prepared by the National Remote Sensing Center, Government of India.
These maps are available only as images; we digitize the map images and convert them
to vector data that can be used in analysis. Following Ryan and Sudarshan (2022), we ex-
tract variables on rock type, aquifer type, and fractures that are predictive of groundwater
availability and yields in hard rock areas aquifer systems.

We supplement both our baseline and outcome data using agricultural yield proxies
derived from satellite imagery. We utilize two common proxies for agricultural biomass:
the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI).
These indices are calculated using Google Earth Engine from Sentinel-2 images at a 10
meter resolution (which are taken every five days) in a 40 meter radius around the coor-
dinates of participants’ wells. We filter out pixels of clouds and surface water, and use
standard techniques to correct for data anomalies from atmospheric disturbances.

10Analog hours-of-use meters manufactured by Nishant Engineers (model: NE53/6S).
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4.2 Outcome Variables

Our primary outcome variable is monthly hours of groundwater irrigation. Meters show
cumulative duration of pump operation, so we calculate monthly irrigation hours as the
difference between values shown on the meter at the current visit and previous month’s
visit. Because not all meter-reading visits occurred at exact monthly intervals, we rescale
observed hours to a 31-day rate so that observations are comparable across farmers and
months.

Our secondary outcome variable is energy consumption in irrigation. Energy use is
not observed directly but rather converted from hours of irrigation using known func-
tional relationships from physics. The formula is:

𝐸 =
𝑃𝑏

𝜂𝑚
× 𝑡 (2)

where 𝐸 is energy consumed, 𝑡 is duration of pump operation, 𝑃𝑏 is the power rating
of the pump’s motor (“brake horsepower”), and 𝜂𝑚 is the motor efficiency, a unitless
constant between zero and one.11

We collect 𝑡 and 𝑃𝑏 in meter-reading and baseline surveys. Motor efficiency 𝜂𝑚 is
difficult to measure accurately and would have required use of electricity meters, with
which many study participants were uncomfortable. Instead, we draw an estimate of
motor efficiency from the literature in the most similar setting we can find: 40 percent
(Mitra et al., 2023).

Note that our energy use variable is not simply a monotone transformation of irriga-
tion hours, since it also depends on pump power, which varies across farmers. That said,
pump power does not endogenously respond to the program,12 so energy use can be seen
as a rescaling of units combined with a reweighting of farmers within the sample. Ei-
ther way, average treatment effects may be substantively different if individual treatment
effects are heterogeneous and correlated with pump power. Similarly, individual-level
price elasticities of demand for energy and hours are equal, but aggregate price elastici-
ties may differ due to this reweighting.

A third set of outcomes measures the economic impacts of water conservation using
two proxies for agricultural yields: log seasonal differences of EVI and NDVI for each

11To obtain 𝐸 in kilowatt-hours (kWh) when 𝑃𝑏 is measured in horsepower (hp), the formula also requires
the unit conversion of 0.7457 kW per hp.

12In a longer-term incentive program, farmers could make investments in new pumps. Our program
lasted for only one irrigation season, and participants were unable to replace a pump without removing the
meter and becoming disqualified from the program.
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farmer. For each index, we follow Asher and Novosad (2020) and proxy productivity
over the 2022-23 rabi season (December to March) as the maximum index value reached
on the farmers’ land during the season less mean index value in the first four weeks of
the season.13 Our preferred outcome is the natural log of this difference, which eases
interpretation. We calculate rabi productivity using the same methodology in the year
prior to the intervention (2021-22) and mean index values in November 2022, prior to
randomization, as additional baseline controls.

4.3 Descriptive Statistics and Balance Checks

Descriptive statistics. Table 1 reports baseline characteristics of the experimental sam-
ple. In both this table and all subsequent analysis, the sample is restricted to farmers
who completed all rounds of data collection: the baseline survey, meter installation, the
baseline meter reading, and all three meter-reading visits during the intervention.

Our sample consists predominantly of smallholder farmers; the mean plot area of their
primary farm is 1.95 hectares.14 Most participants are literate, have completed primary
and secondary education, and identify with a “scheduled caste/scheduled tribe/other
backward caste” designation. Only half own a plow or tractor. Cotton is the primary crop
in our sample, with sorghum/millet, groundnut, and pulses as the next most common
crops. Farmers are at least somewhat diversified in their crops, with a mean count of
distinct crops around 2.

Most participants have only one active well; some have two. Some wells are dug-
wells and others are borewells (tubewells); the most common type of well is a dug-cum-
borewell, in which a borehole is drilled into the bottom or side of a dugwell in order to
access additional pockets of water. The average well is 59 meters deep, but many are
considerably deeper. The most common electric pump installed in each well is rated at 5
horsepower, but some are more powerful.

Many farmers in our sample are already using cultivation practices that conserve wa-
ter. 41 percent use a drip irrigation system, 69 percent use raised beds, and 19 percent
use rotational, strip, or zero tillage. Local water markets are rare in our context: Only
1 percent report having purchased water for irrigation. Farmers sometimes share irriga-
tion sources with neighbors, usually relatives, but water sharing is not a large share of

13Daily index values are first averaged across wells for farmers with multiple wells. We difference the
mean index value of the first four weeks of the growing season, as opposed to six weeks in Asher and
Novosad (2020), to avoid contamination by the start of our intervention.

14The Indian government typically defines farmers holding less than 2 hectares as “small and marginal
farmers”.

14



irrigation in our sample: About 10 percent of pump operation during the previous (2021-
22) irrigation season was directed to irrigation off the primary farm, which includes both
neighbors and secondary farms also held by the respondent.

Balance. Columns 3 and 4 of Table 1 report means of baseline characteristics separately
for the overall treatment and control groups. The two groups appear similar across all
characteristics. We formally check for balance test between the main treatment and con-
trol groups using a Wald F-test for joint orthogonality of all characteristics reported in
this table. The F-statistic is small and the p-value is large, so we fail to reject the null
hypothesis that treatment-control differences are zero for all characteristics.

Our sample includes more farmers in the treatment group than in the control group,
implying that attrition rates were different across the two groups. Differential attrition
would bias the results if attrition is correlated with characteristics that predict the out-
come variable. But we do not see evidence that the treatment and control groups are
differentially selected across a range of baseline characteristics.

5 Program evaluation

We first evaluate our conservation payments program as implemented by estimating
intent-to-treat (ITT) effects of eligibility for the overall intervention. We estimate post-
double-selection LASSO regressions of the following form:

𝑌𝑖𝑡 = 𝛼𝑡 + 𝜏 · ConservationCredits𝑖 + 𝛾′X𝑖𝑡 + 𝜀𝑖𝑡 , (3)

where 𝑌𝑖𝑡 is a outcome variable for farmer 𝑖 at monthly visit 𝑡, and ConservationCredits𝑖
is an indicator for being in the overall treatment group and therefore eligible for pay-
ments. 𝑋𝑖𝑡 is a vector of individual-specific covariates interacted with month 𝑡 cho-
sen by double-selection LASSO (Belloni et al., 2013); Appendix B lists the full set of
candidate covariates.15 Standard errors are clustered by randomization pair (following
de Chaisemartin and Ramirez-Cuellar (2024)), which nests months within farmer and
farmers within groups of neighbors that reported sharing water prior to the interven-
tion.16

15We implement post double-selection LASSO in Stata with the commands dsregress for OLS, dspoisson
for Poisson, and the user-written command ivlasso (Ahrens et al., 2018) for instrumental variables regres-
sions, respectively.

16We omit randomization pair fixed effects following Bai et al. (2023), who show that they complicate the
interpretation of the estimand and do not necessarily reduce bias from differential attrition.
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Because our primary outcome variables are right-skewed, we expect covariates to
have multiplicative rather than additive effects on the outcomes. We therefore estimate
the same specifications using Poisson pseudo-maximum likelihood, which can more pre-
cisely estimate regression-adjusted treatment effects in such cases (Chen and Roth, 2024):

𝑌𝑖𝑡 = exp{𝛼𝑡 + 𝜏 · ConservationCredits𝑖 + 𝛾′X𝑖𝑡} · 𝑢𝑖𝑡 , (4)

Poisson regression directly recovers a transformation of the average treatment effect as a
proportion of the control mean (Silva and Tenreyro, 2006).17

5.1 Conservation payments reduce irrigation time and energy use

Table 2 presents estimated effects of overall payment eligibility on hours of irrigation,
the variable directly measured by our meters. Our preferred estimate is the covariate-
adjusted specification in column (3): Farmers assigned to the program operated their
pump for an average of 10.4 fewer hours per month during the intervention period than
control-group farmers. This effect represents a 22 percent reduction relative to the control-
group mean of 47 hours per month, and the 99% confidence interval excludes zero.

Results are broadly robust to alternative specifications. Column (7) shows the same
specification as column (3) but estimated using Poisson regression, again indicating that
the program led to a 22 percent reduction (𝑒−0.25 − 1) in irrigation hours. Estimates are
less precise without covariate adjustment (columns (1) and (5)) but the 90% confidence
intervals still exclude zero. Columns (2) and (5) include village fixed effects and no other
covariates, a parsimonious example of a fully saturated regression model. We include
this specification to confirm that the main result is similar in a specification guaranteed
to be unbiased for the average treatment effect even in finite samples (Athey and Imbens,
2017).

To see how the program affected the distribution of irrigation hours, Figure 5 plots bin
treatment effects – i.e., effects of payment eligibility on the share of participants whose
irrigation hours fall within certain ranges – using a subset of controls. These estimates
are less precise but important patterns are visible. Figure 5(a) plots bin effects by hours of
irrigation. It shows that the program moved participants from higher values of pumping
to lower values. Figure 5(b) plots bin effects by hours relative to the benchmark, which

17Our primary outcome variables sometimes take a value of zero, so we cannot run log-linear OLS re-
gressions. We avoid other “log-like” transformations, such as the inverse hyperbolic sine, because they are
sensitive to the choice of units (Mullahy and Norton, 2023) and because any notion of an individual-level
percentage change is undefined for a variable that admits zero (Chen and Roth, 2024).
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varies across participants. It shows that the program moved participants from above their
benchmark to below it, suggesting that participants understood the program structure
and complied with its incentives.18

Effects on energy use are shown in Table 3. Again our preferred estimate is in column
(3): Payment eligibility reduced energy use by 140 kWh per month, a 23 percent reduction
compared with a control-group mean of 611 kWh per month. Alternative specifications
are broadly consistent though less precise than the irrigation hours regressions. Point
estimates without covariate adjustment are much smaller but so imprecise that we cannot
reject equality with our preferred specification.

5.2 Treatment effects increased over time

To investigate seasonal patterns in treatment effects, we augment our primary regressions
to estimate separate treatment effects in each month of the program. Results are plotted in
Figure 6 for both OLS and Poisson estimates of our preferred specification, which includes
controls selected by double LASSO.

Average effects of the program increased in magnitude over the course of the exper-
iment, from 5 hours in the first month to 12 and 13 hours in the last two months of the
program. (We can reject that the first and second, or the first and third months, are equal,
at a 5 percent significance level.) These differences are even more dramatic when ex-
pressed as a percentage of the control mean, which declined over time. Treatment effects
estimated using Poisson regression increased from 9 percent in the first month to 22 and
28 percent in the second and third months.

We see two likely explanations for the growing response over time. One possible
reason is increasing trust in the program. Because the conservation payments program
was a completely new concept, it seems likely that participants would have changed their
behavior only tentatively in the first month. After they saw real cash appear in their
bank accounts, they responded less cautiously. Another possible reason is that demand
for irrigation becomes more elastic later in the growing season. For many crops, water
application is most critical during an early phase of growth. After this early phase, yields
may be less sensitive to irrigation amounts, and so farmers would become more sensitive
to the price of irrigation. We do not currently have data to distinguish between these
explanations, but we expect both are at play.

18Usually we would not expect to see bunching immediately below the benchmark threshold since the
budget set is concave at this point; anti-bunching is more likely. In this case, the reason that effects concen-
trate in the first bin below the threshold is likely due to the zero lower bound. Most benchmarks are set in
the 10-50 hour range, so most participants can never appear in the first three bins shown in the graph.
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5.3 Higher prices affect energy use more than irrigation time

Next, we go beyond the effects of the program overall to investigate whether the level
of price incentive affects irrigation behavior, conditional on program participation. We
compare the high- and low-price sub-treatment groups by interacting the overall treat-
ment variable with an indicator for being in the high-price subgroup. The results are in
columns (4) and (8) of Tables 2 and 3.

Across specifications and outcomes, the main effects of the program on irrigation
hours remain large and statistically significant, while the interaction effects are smaller
and not statistically significant. This says that being offered a price incentive of 50 INR
per hour, relative to not being offered a price incentive at all, has a greater effect on con-
servation than increasing the price from 50 to 100 INR per hour. This result is consistent
with a convex demand curve: There may be many low-cost opportunities to conserve wa-
ter and energy resources that are left on the table when marginal resource prices are zero
but adopted when prices are positive, but once that low-hanging fruit is picked, resource
conservation faces more rapidly rising opportunity costs.

But for the outcome of energy use, this pattern is reversed. The interaction effect is
greater than the main effect, meaning that we obtained more energy conservation from
raising the price (from low to high) than from offering the program at all (with only the
low price). Energy use is simply a rescaling of irrigation hours, not an independently
measured outcome, and the only component of the scaling factor that differs across farm-
ers is pump power. So this result implies that farmers with more powerful pumps re-
sponded more to the higher price than those with less powerful pumps. Perhaps for
these farmers, the opportunity cost of an hour of pumping is larger, and a higher hourly
price may thus be needed to encourage conservation.

Appendix D estimates a price elasticity of demand, using treatment eligibility as an
instrument for effective price. While the response to our program is specific to our design
parameters, a demand elasticity is potentially more generalizable. However, we hesi-
tate to put much weight on this result. The problem is that some participants may have
responded to the incentives even without receiving a payment, violating the exclusion
restriction. For example, they might have generally reduced their consumption with-
out paying close attention to the benchmark, or perhaps they reduced their consumption
early in the month before deciding the benchmark was too stringent to be worth pursu-
ing.
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5.4 Conservation payments do not harm agricultural productivity

To understand whether the intervention has any measurable economic impacts, we use
Equation 3 to examine the effects of the intervention on proxies of agricultural yields.
Results are shown in Appendix Table 11.

Despite reducing irrigation intensity, payment eligibility does not lead to any signif-
icant change in yields. Our preferred estimate is in column (3): the seasonal increase
in NDVI among payment eligible farmers is about 7.6 percent larger than among control
farmers, and although this estimate is noisy we can reject substantial decreases in pro-
ductivity among treated farmers. The results are similar if we use alternative measures
of agricultural productivity. Overall, we find no evidence that the reductions in irrigation
had negative economic consequences for farmers.

6 Cost-effectiveness

Now, we consider the cost-effectiveness of our conservation payment program from the
perspective of an electricity utility. For now we set aside the social costs of groundwater
depletion and focus solely on energy. Suppose political constraints rule out straightfor-
ward volumetric prices for electricity. Might a utility company find it less costly to reduce
demand via a conservation payments program than to increase supply by procuring ad-
ditional electricity?

We calculate the cost of reducing electricity demand through this program as the ratio
of total expenditures on conservation payments to total energy conserved. Note this ratio
is not just a rescaling of our demand estimates, because it includes payments made to
inframarginal farmers. For total energy conserved as a result of the program, we use the
preferred OLS estimate from Table 2 because it is more precise than the Poisson estimate.
Table 4 shows further details of this calculation, parameters used, and results.

We estimate that conservation payment program reduced electricity use at a cost of 6.1
INR per kWh conserved. This value appears to be similar to published estimates of the
costs of electricity procurement. It is slightly greater than the average cost of electricity
procurement per unit sold by the electric utility in our study area, 5.4 INR per kWh, but
the marginal costs of electricity procurement are likely greater than than average costs. It
is also lower than the cost of electricity procurement in the nearby state of Punjab.

In this calculation, we only consider expenditures on conservation payments and omit
other program costs such as meter hardware and personnel and travel expenses for read-
ing meters. We do so for two reasons. First, electric utilities obtain other benefits from
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metering their customers, so we prefer to consider the perspective of a utility that is al-
ready collecting this data. Second, metering costs in a permanent program would likely
be lower than in our short-term intervention. It would likely be more cost-effective to
install smart meters that can be read remotely, saving the labor and travel expenses, the
fixed cost of which would then be amortized over a longer period.

It is also worth considering the social costs of groundwater depletion and of air pol-
lution from electricity generation. A utility company may not include these costs in a
cost-effectiveness calculation, but a government may want to consider them as motiva-
tion for subsidizing a conservation payments program. Estimating the negative external-
ities from groundwater extraction is beyond the scope of this study. But even relatively
small estimates of these social costs would likely make it socially optimal for a utility to
offer conservation payments before expanding electricity supply.

7 Contract design: Choosing benchmarks

Last, we consider the choice of benchmark values against which conservation is rewarded.
Many conservation programs set the benchmark equal to a historical measure of the tar-
get outcome – for example, the number of trees on a property at program enrollment, or
the amount of water used last year. In some settings, historical use might reliably predict
the target outcome absent the program, such that conservation measured relative to this
value indeed represents conservation relative to the counterfactual. But in other settings,
it might not predict the counterfactual well. And if not, then basing the benchmark on
historical use might not be the best approach.

Assuming a principal seeks to maximize the cost-effectiveness of a conservation pay-
ment program, the cost-effective benchmark generally does not coincide with historical
use nor the best prediction of counterfactual use. We suggest that cost-effective bench-
marks are likely to be stringent: The optimal contract will often reward conservation rela-
tive to a benchmark value set substantially lower than historical use. This is because more
stringent benchmarks reduce expenditures on inframarginal payments and also may in-
duce more conservation.

7.1 Stringent benchmarks reduce inframarginal payments

First, we show that inframarginal payments are large in our setting. Inframarginal pay-
ments arise from prediction error – they appear when the benchmark is set above re-
source use without the program, and they increase mechanically with the benchmark.
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This fact suggests a strategy of targeting benchmarks on counterfactual uncertainty. Per-
haps benchmarks ought to be set approximately equal to the counterfactual when it is
predictable, and lower when it is uncertain.

This logic inspired the design of the benchmarks that we implemented in the treat-
ment group. We expected (and found) that pumping variance increases with baseline
pumping (i.e., in the first month after meter installation and before randomization); Ap-
pendix Figure 9 shows this pattern of heteroskedasticity. We therefore set benchmarks
approximately equal to first-month pumping at low values but lower (more stringent)
at higher values, as the predictive value of first-month pumping fell. Figure 7 plots our
benchmarks as a function of first-month pumping, with the 𝑦 = 𝑥 line for comparison.
Benchmarks start low at low values of first-month pumping, rise roughly one-for-one for
a range of values, but then flatten out and decline again.19 Lenient benchmarks would
have been very expensive for participants whose first-month pumping exceeds 200 or
300 hours, so we chose not to chase them; some ended up pumping near zero during the
program even absent incentives.

Our benchmark design reduced total payments by 45% relative to setting benchmarks
equal to first-month pumping. We can estimate inframarginal payments by calculating
what payments would have been in the control group (where there is no behavioral re-
sponse) under alternative benchmark schemes. Appendix Table 12 lists average infra-
marginal payments calculated under each of several alternative benchmark scenarios.
Inframarginal payments vary widely based on how benchmarks are set. They are also
a large share of total payments, implying that inframarginal payments are an important
driver of cost-effectiveness.

7.2 Stringent benchmarks induce more conservation

Next, we turn to the behavioral response. How does pumping respond to the bench-
marks? Recall that more lenient benchmarks may induce participants to conserve on the
extensive margin, but more stringent benchmarks may induce participants to increase
conservation.

To test which effect dominates, we analyze our randomized benchmark sub-treatment.

19The broad shape of this function came from optimizing a nonlinear function of first-month pumping
to maximize the share of participants who would be marginal to the incentive (i.e., pump at or below
the benchmark) subject to the project’s budget constraint. This function was increased or decreased by 15
percent in the high-benchmark and low-benchmark randomized sub-treatment groups. Benchmarks were
rounded to the nearest 10 hours, set separately for each well, and summed. The minimum benchmark was
10 hours. Remaining variation comes from a small number of errors in field operations, as benchmarks
were calculated during the same visit at which first-month pumping was observed.
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Benchmarks were set approximately 30 percent higher for participants in the high-benchmark
group than in the low-benchmark group. The first stage of this sub-treatment is strong:
Table 5, column 1 shows that it increased benchmarks by 9 hours on average with an
F-statistic of 135.

In the overall sample, evidence is not strong that random marginal changes to bench-
marks affect pumping. In Table 5, column 2 reports a regression of irrigation hours on
overall treatment (i.e., payment eligibility) and its interaction with the high-benchmark
sub-treatment. Relative to the low-benchmark group, the high-benchmark group pumped
about 5 hours more per month, but the confidence interval extends from −1 to 10.

However, there are strong reasons to expect the effect of benchmarks to differ across
participants. At low values of water use, the extensive-margin effect is likely to dominate
– small changes in benchmarks are large relative to water use, while income effects are
small – so we would expect more stringent benchmarks to decrease conservation. At high
values of water use, the intensive-margin effect is likely to dominate – benchmarks are too
low to affect the extensive margin for most participants, while income effects are greater
– so we would expect more stringent benchmarks to increase conservation.

This is in fact what we find: Participants with high expected pumping respond to
lower benchmarks by conserving more. Columns 3-4 of Table 5 report the same regres-
sion estimated in “low pumping” and “high pumping” subsamples, which split the full
sample at 60 hours of first-month pumping, the threshold where our benchmark formula
flattens out.20 For participants with low first-month pumping, the benchmark has a small
and statistically insignificant effect. But for participants with high first-month pumping,
there is a sizable positive effect – lower benchmarks reduce pumping. Columns 5-6 report
2SLS versions of the regressions; at least within the range of benchmarks we set, lower
benchmarks appear to reduce pumping roughly one-for-one.

This pattern holds when we expand the analysis. Figure 8 plots the effect of the high-
benchmark sub-treatment by seven quantiles of first-month pumping. These estimates
come from a Poisson regression so that the effects are comparable to each other in pro-
portional terms. For participants with low first-month pumping, a higher benchmark
decreases pumping by around 20 percent. For participants with high first-month pump-
ing, a higher benchmark increases pumping by 20 to 30 percent. These results imply that
to maximize water conservation, the program should offer higher benchmarks for partic-
ipants with low expected pumping (so that conservation is worthwhile for more of them)

20This dimension of heterogeneity was not pre-specified, so these results should be treated as exploratory
rather than confirmatory. They are not necessary for the overall result that the low-benchmark group is
more cost-effective, because the difference is driven more by the inframarginal payments than the behav-
ioral response.
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and lower benchmarks for participants with high expected pumping (because they can
be induced to conserve more that way).

7.3 Stringent benchmarks can improve cost-effectiveness

Finally, we put the inframarginal payments and behavioral response together and calcu-
late the overall cost-effectiveness of the program under different scenarios. We do not
attempt to globally optimize the benchmarks, which would require extrapolating far be-
yond our sample variation. Instead, we restrict attention to the local variation introduced
by our randomized high- and low-benchmark sub-treatment groups.

Table 6 calculates cost-effectiveness in the full treatment group and each benchmark
sub-treatment group. The low-benchmark group reduces pumping at a cost of 71 INR
per hour, which is 39 percent less expensive than the full sample and 59 percent less ex-
pensive than the high-benchmark group. This difference is driven both by inframarginal
payments and the behavioral response.

We can also locally optimize benchmarks within the range of our experiment. We
choose either the high or low benchmarks to maximize conservation, using the quan-
tile estimates from Figure 8. Within each quantile bin, we keep participants in the high-
benchmark group if the effect of higher benchmarks on pumping is negative, keep partic-
ipants in the low-benchmark group otherwise, and drop participants in the other group.
Using this carefully selected sub-sample, we then recalculate overall program effects (i.e.,
relative to the full control group) and payment expenditures.

In Table 6, the conservation-maximizing group achieves more conservation than the
full sample while spending only slightly more on conservation payments. As a result,
the average cost of conservation is only 86 INR per hour in the conservation-maximizing
group, as compared with 117 INR per hour in the full sample, producing a 27 percent
increase in cost-effectiveness.

This simulation only maximizes conservation, not cost-effectiveness. As it turns out,
the low-benchmark group is even more cost-effective than the conservation-maximizing
group. Jointly optimizing both conservation and payment expenditures would likely pro-
duce a schedule of benchmarks that is even more cost-effective.

8 Conclusion

This study finds that moderately sized incentives for groundwater conservation lead
farmers to reduce groundwater irrigation by approximately 20 percent. Impacts increase
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over time, indicating that the response to incentives can be sustained. And this is a short-
term response: Our program lasted for only one irrigation season and was introduced
after crops were already planted. In a longer-term program, the response would likely be
even greater, since farmers would be able to substitute crops and adjust other inputs.

These findings suggest that conservation payments, a policy solution similar to exist-
ing “payments for environmental services” programs, are an effective tool for managing
groundwater and energy resources in India. In many settings — and perhaps especially
in the setting of agricultural groundwater extraction in India — Pigouvian taxes may be
politically infeasible. By exchanging corrective taxes for subsidies, conservation credits
overcome the political barriers to taxing the agricultural sector, while still introducing
marginal incentives for conservation. Thus, conservation credits may be a particularly
promising policy approach for reducing inefficient groundwater extraction.

We also find that the program effect is large relative to total cost of incentives: as
designed, the overall expenditure per unit of energy conserved is similar to the per-unit
cost a utility company would face in procuring electricity. This suggests that a utility
capable of rolling out conservation credits at low fixed cost could potentially save money
if the program were carefully designed. Our program uses a combination of individual-
specific benchmarks (set using verifiable baseline irrigation information) and maximum
payments to avoid extreme payments for infra-marginal behavior.
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Figure 1: Budget set of conservation credits.

This figure shows the general form of the budget set created by a conservation payment contract,
along with indifference curves of two example agents. The payment equals the price 𝑝 times the
quantity conserved below the benchmark, up to a maximum payment. Agent A is marginal and
responds to the contract by reducing quantity extracted. Agent B is extra-marginal, and does not
change quantity extraction in response to the program.
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Figure 2: Villages in Study Area

Notes: This figure shows the villages in Gujarat, India where participants were enrolled as blue
dots.
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Full Sample

Control:                
Hours-of-use Meter

Conservation Credits:                
Meter and Payments

High 
Benchmark/ 

High Price

High 
Benchmark/ 

Low Price

Low 
Benchmark/ 

High Price

Low 
Benchmark/

Low Price

Figure 3: Intervention Design

Notes: This figure illustrates the four interventions used in the randomized experiment. Farmer
sharing pools were assigned in equal proportion to the control and treatment (“Conservation
Credits”) groups. Within the treatment group, the four sub-treatment arms were assigned in equal
proportion.
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Partner Lists

Eligibility, Baseline and Consent

Meter Installation

Sample 
Frame

Summer 
2022
Fall 

2022
Baseline Meter Reading, RandomizationDec 

2022
1st Meter Reading Follow-upJan

2023

2nd Meter Reading Follow-upFeb
2023

3rd Meter Reading Follow-upMar
2023

Figure 4: Experiment Timeline

Notes: This figure displays the timeline of our experimental intervention and data collection pro-
cesses.
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-.0
2

0
.0

2
.0

4
.0

6
.0

8

Tr
ea

tm
en

t e
ffe

ct
 o

n 
bi

n 
sh

ar
e

-100 0 100 200 300 400

Hours of irrigation relative to benchmark

Figure 5: Bin treatment effects of payment eligibility on the distribution of irrigation hours

Notes: This figure plots estimated coefficients from regressions of binary indicators for whether a
participant’s value of hours of irrigation fell within specified ranges on eligibility for conservation
payments. Regressions use a subset of controls. Error bars represent 95% confidence intervals.
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Figure 6: Treatment effects of conservation payments grew over time

Notes: This figure plots the treatment effect of eligibility for conservation payments on hours of
irrigation across the three months of the intervention period. Treatment effects are estimated using
double-LASSO selected controls. Error bars represent 95% confidence intervals.
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Figure 7: Benchmarks in the Treatment Group

Notes: Figure plots benchmarks set in the treatment group. Points are jittered to show density; all
benchmarks were multiples of 10 hours.
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Figure 8: Effects of High Benchmarks on Pumping, By Quantiles of Pre-Program Pumping

Notes: Estimated heterogeneous effects of the randomized high-benchmark sub-treatment group
relative to the low-benchmark group, by quantiles of hours of irrigation before the intervention.
Figure plots coefficients in Poisson regression. Note this dimension of heterogeneity was not pre-
specified.
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Table 1: Baseline Summary Statistics in Full Sample and by Treatment Group

Full Sample Control Treatment

(1) (2) (3) (4)
Mean SD Mean Mean

A. Demographics
Household size 6.34 2.85 6.46 6.22
Scheduled caste/tribe or other backwards caste 0.86 0.34 0.86 0.87
Muslim 0.09 0.28 0.09 0.09
Years of education (household head) 10.94 3.39 10.88 11.00
Literacy (household head) 0.82 0.38 0.83 0.81

B. Farm statistics
Plot hectares 1.95 1.35 1.97 1.92
Number of crops cultivated 1.96 1.08 2.01 1.91
Fraction of farmed area planted with cotton 0.53 0.41 0.54 0.53
Fraction of farmed area planted with sorghum/millet 0.15 0.25 0.15 0.16
Fraction of farmed area planted with groundnut 0.15 0.25 0.14 0.15
Fraction of farmed area planted with pulses 0.11 0.21 0.11 0.10
Has cow, ox, or buffalo 0.92 0.27 0.93 0.91
Has plow or tractor 0.50 0.50 0.50 0.50

C. Well Statistics
Total number of active wells 1.19 0.39 1.19 1.19
Deepest well is dugwell 0.24 0.43 0.23 0.26
Deepest well is borewell 0.25 0.43 0.23 0.27
Deepest well is dug-cum-borewell 0.51 0.50 0.55 0.47
Deepest well: ever deepened 0.17 0.37 0.17 0.17
Deepest well: depth (meters) 58.62 85.17 53.66 63.12
Deepest well: max water level (meters) 16.07 36.60 14.68 17.33
Deepest well: pump power 5.61 3.27 5.46 5.75

D. Irrigation Statistics
Pre-intervention monthly irrigation hours 71.71 71.09 69.81 73.43
Total self-reported hours of irrigation on farm 340.97 2205.91 327.45 353.25
Total self-reported hours of irrigation off farm 32.46 153.97 32.17 32.73
Purchased water for irrigation 0.01 0.11 0.01 0.01
Used drip irrigation 0.41 0.49 0.42 0.41
Used sprinkler irrigation 0.01 0.10 0.01 0.02
Used raised beds 0.69 0.46 0.69 0.68
Used rotational, strip, or zero-tillage 0.19 0.39 0.17 0.20
Used farm bunds 0.09 0.29 0.10 0.08

Test for joint orthogonality of covariates
F-statistic 0.64
P-value 0.93

Sample size
Number of individuals 989 471 518
Percent of sample 100.0 47.6 52.4

Notes: This table summarizes baseline characteristics of the sample of farmers who completed all three meter reading survey
rounds during the intervention. The F-statistic and associated P-value test the joint orthogonality of all characteristics listed
in the table to treatment assignment relative to the control group.
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Table 2: Intent-to-Treat Impacts of Conservation Payments on Hours of Irrigation

OLS Poisson

(1) (2) (3) (4) (5) (6) (7) (8)

Payment Eligibility -5.97∗ -9.92∗∗∗ -10.4∗∗∗ -9.01∗∗∗ -0.14∗ -0.23∗∗∗ -0.25∗∗∗ -0.22∗∗∗

[3.46] [3.21] [2.44] [2.92] [0.079] [0.073] [0.056] [0.067]

Payment Eligibility
× High Price

-2.80 -0.047
[3.48] [0.084]

Control Mean 46.59 46.59 46.59 46.59 46.59 46.25 46.59 46.59
Village FE X X
Lasso Controls X X X X
N Clusters 494 494 494 494 494 485 494 494
N Farmers 989 989 989 989 989 970 989 989
N Observations 2,967 2,967 2,967 2,967 2,967 2,910 2,967 2,967

Notes: The sample includes all farmers who completed all three meter reading survey rounds during the intervention. The outcome
is monthly hours of irrigation by the farmer during the three intervention months (scaled to 31 days). Standard errors clustered at the
randomization pair level are in brackets.

Table 3: Intent-to-Treat Impacts of Conservation Payments on Energy Use (kWh)

OLS Poisson

(1) (2) (3) (4) (5) (6) (7) (8)

Payment Eligibility -23.5 -98.4 -139.8∗∗∗ -83.7 -0.039 -0.17 -0.22∗∗∗ -0.14∗

[70.2] [64.5] [40.6] [53.9] [0.12] [0.11] [0.065] [0.082]

Payment Eligibility
× High Price

-111.2∗ -0.16
[66.4] [0.11]

Control Mean 610.81 610.81 610.81 610.81 610.81 606.16 610.81 610.81
Village FE X
Lasso Controls X X X X
N Clusters 494 494 494 494 494 485 494 494
N Farmers 989 989 989 989 989 970 989 989
N Observations 2,967 2,967 2,967 2,967 2,967 2,910 2,967 2,967

Notes: The sample includes all farmers who completed all three meter reading survey rounds during the intervention. The outcome is
monthly kWh of energy used for irrigation by the farmer during the three intervention period months (scaled to 31 days). Energy use is
calculated from hours of irrigation as described in Section 2. Standard errors clustered at the randomization pair level are in brackets.
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Table 4: Cost-Effectiveness of Conservation Payments

Parameter Value Unit Source
Panel A: Parameters used
Pump motor efficiency, from a
similar context

40% - Mitra, Balasubramanya,
& Brouwer (2023)

Unit conversion constant 0.7457 kW per hp Known constant
Mean duration of intervention 3.7 Months Meter reading data
Panel B: Calculation of cost-effectiveness
Average effect of program on
electricity use, monthly

-139.8 kWh/month
per farmer

Table 3, column (3)

Average effect of program,
scaled to rabi season

-512.3 kWh per
farmer

Calculated

Average conservation
payments, rabi season

3369 INR per
farmer

Program
implementation data

Average expenditure per unit
electricity conserved

6.6 INR/kWh Calculated

Panel C: Comparisons of cost-effectiveness
Cost of reducing electricity use
through this program

6.6 INR/kWh From above

Average cost of electricity
procurement per unit sold,
Gujarat

5.4 INR/kWh Paschim Gujarat Vij
Company Ltd. (2021)

Cost of electricity procurement,
Punjab

7.9 INR/kWh Mitra, Balasubramanya,
& Brouwer (2023)
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Table 5: Effects of Benchmarks on Hours of Irrigation, by Pre-Program Pumping

First Stage Reduced Form IV

(1) (2) (3) (4) (5) (6)
All All Low High Low High

Payment Eligibility -10.1∗∗∗ -2.64 -20.6∗∗∗

[2.79] [2.61] [6.09]

Eligibility x High Benchmark 9.09∗∗∗ 4.58 -2.80 15.1∗∗

[0.78] [2.97] [2.42] [6.69]

Benchmark (hours) -0.64 1.10∗∗

[0.43] [0.47]

Control Mean 0.00 46.59 18.69 85.39 0.00 0.00
Pre-program pumping (fine bin FE) X X X X X X
N Clusters 265 492 284 208 154 111
N Farmers 518 989 573 416 299 219
N Observations 1,554 2,967 1,719 1,248 897 657

Notes: “Low” and “High” samples split the full sample at 60 hours of first-month (i.e., pre-program) pumping. The full sample includes
all farmers who completed all three meter reading survey rounds during the intervention. The outcome is monthly hours of irrigation
by the farmer during the three intervention months (scaled to 31 days). Standard errors clustered at the randomization pair level are in
brackets. Note this dimension of heterogeneity was not pre-specified.

Table 6: Program Cost-Effectiveness by Benchmark Group

Metric
Full
sample

High-
benchmark
group

Low-
benchmark
group

Locally
conservation-
maximizing
benchmarks

Average effect of program on
pumping, rabi season (hours) -28.7 -36.6 -24.0 -40.3

Average conservation
payments, rabi season (INR) 3,369 2,605 4,157 3,482

Average expenditure per unit of
pumping conserved
(INR/hour)

-118 -71 -173 -86
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A A theoretical model of conservation payments

An agent receives benefit 𝑢(𝑞, 𝑐) from consumption of a resource 𝑞 and a numeraire good
𝑐, where 𝑢 is concave (𝑢𝑞 > 0, 𝑢𝑐 > 0, 𝑢𝑞𝑞 < 0, 𝑢𝑐𝑐 < 0, 𝑢𝑞𝑐 < 0). The agent has income 𝑚

and pays a small constant marginal cost 𝑟 for each unit of the resource consumed.21

A principal seeks to reduce the agent’s resource consumption 𝑞. They cannot change
fees for use of the resource but can offer conservation payment contracts. Contracts spec-
ify a price and benchmark {𝑝, 𝑏} and make positive payments 𝑦 that pay 𝑝 for every unit
of resource forgone below the benchmark (ignoring maximum payments for simplicity):

𝑦 =


𝑝 · (𝑏 − 𝑞) 𝑞 < 𝑏

0 𝑞 ≥ 𝑏

The agent chooses quantity 𝑞 to maximize utility subject to their budget constraint:

max
𝑞

𝑢(𝑞, 𝑐) s.t. 𝑐 + 𝑟𝑞 ≤ 𝑚 + 𝑦.

The budget constraint is piecewise, so we must consider four candidate solutions: the
two corner solutions 𝑞2 = 0 and 𝑞3 = 𝑏, plus possible solutions on the two linear facets of
the budget constraint:

𝑞0 = arg max
𝑞

𝑢(𝑞, 𝑐) s.t. 𝑐 + 𝑟𝑞 ≤ 𝑚 if 𝑞0 > 𝑏

𝑞1 = arg max
𝑞

𝑢(𝑞, 𝑐) s.t. 𝑐 + 𝑟𝑞 ≤ 𝑚 + (𝑏 − 𝑞)𝑝 if 𝑞1 < 𝑏

First-order conditions imply that 𝑞0 and 𝑞1 are chosen so as to set the marginal rate of
substitution equal to the effective price:

𝑢𝑞(𝑞0, 𝑐) = 𝑟 · 𝑢𝑐(𝑞0, 𝑐).
𝑢𝑞(𝑞1, 𝑐) = (𝑝 + 𝑟) · 𝑢𝑐(𝑞1, 𝑐).

21In the context of groundwater, this cost might represent labor costs of irrigation, low existing volumetric
fees, or internalized scarcity value.
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A.1 Quasilinear utility

Let’s first assume the utility function is quasilinear:

𝑢(𝑞, 𝑐) = 𝑐 + 𝑣(𝑞)

where 𝑣(𝑞) is strictly increasing, concave, and continuously differentiable. It has first
derivatives

𝑢𝑞(𝑞, 𝑐) = 𝑣′(𝑞)
𝑢𝑐(𝑞, 𝑐) = 1

so the FOCs become

𝑟 = 𝑣′(𝑞0)
𝑝 + 𝑟 = 𝑣′(𝑞1)

which we can invert to get a demand function:

𝑞0 = 𝐷(𝑟) ≡ 𝑣′−1(𝑟)
𝑞1 = 𝐷(𝑝 + 𝑟).

A.1.1 How does the benchmark affect the intensive margin?

Conditional on “being marginal,” i.e., choosing the solution 𝑞1, the benchmark does not
affect quantity 𝑞1, since it is a pure transfer. It does not appear in the demand function
above.
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A.1.2 How does the benchmark affect the extensive margin?

There are four possible solutions. Set aside the question of whether 𝑞0 and 𝑞1 exist; as-
sume they do. When is 𝑞1 ≻ 𝑞0?

𝑢(𝑞1; 𝑏, 𝑝) > 𝑢(𝑞0; 𝑏, 𝑝)
𝑐(𝑞1) + 𝑣(𝑞1) > 𝑐(𝑞0) + 𝑣(𝑞0)

𝑚 + (𝑏 − 𝑞1)𝑝 − 𝑟𝑞1 + 𝑣(𝑞1) > 𝑚 − 𝑟𝑞0 + 𝑣(𝑞0)

𝑏 > 𝑞1 + 1
𝑝

(
(𝑞1 − 𝑞0)𝑟 − [𝑣(𝑞1) − 𝑣(𝑞0)]

)
𝑝 >

1
𝑏 − 𝑞1

(
(𝑞1 − 𝑞0)𝑟 − [𝑣(𝑞1) − 𝑣(𝑞0)]

)
As shown above, the benchmark does not affect the solutions 𝑞0 and 𝑞1, so we can say
that a higher benchmark expands the range of parameters for which this expression
holds. Therefore, raising the benchmark makes the agent more likely to become marginal
(choose 𝑞1 over 𝑞0). In other words, lowering the benchmark makes it less likely that the
agent will respond to the program at all. Also, a higher price makes the agent more likely
to become marginal.

When is 𝑞2 ≻ 𝑞1?

𝑢(𝑞2; 𝑏, 𝑝) > 𝑢(𝑞1; 𝑏, 𝑝)
𝑐(𝑞2) + 𝑣(𝑞2) > 𝑐(𝑞1) + 𝑣(𝑞1)
𝑚 + 𝑝𝑏 + 𝑣(0) > 𝑚 + (𝑏 − 𝑞1)𝑝 − 𝑟𝑞1 + 𝑣(𝑞1)

(𝑝 + 𝑟)𝑞1 > 𝑣(𝑞1) − 𝑣(0)

The benchmark does not influence this choice. Whether or not the agent reaches the
corner solution of zero depends only on demand and price, not the benchmark.

When is 𝑞2 ≻ 𝑞0?

𝑢(𝑞2; 𝑏, 𝑝) > 𝑢(𝑞0; 𝑏, 𝑝)
𝑐(𝑞2) + 𝑣(𝑞2) > 𝑐(𝑞0) + 𝑣(𝑞0)
𝑚 + 𝑝𝑏 + 𝑣(0) > 𝑚 − 𝑟𝑞0 + 𝑣(𝑞0)

𝑏 >
1
𝑝

(
𝑣(𝑞0) − 𝑣(0) − 𝑟𝑞0)

Again, raising the benchmark makes the the agent more likely to choose the corner solu-
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tion (choose 𝑞2 over 𝑞0).

A.2 CES utility

Now let’s instead assume the utility function is CES, where 𝛼 ∈ (0, 1) and 𝜌 ≤ 1:

𝑢(𝑞, 𝑐) =
(
𝛼𝑞𝜌 + (1 − 𝛼)𝑐𝜌

)1/𝜌

which has first derivatives

𝑢𝑞(𝑞, 𝑐) =
(
𝛼𝑞𝜌 + (1 − 𝛼)𝑐𝜌

) (1−𝜌)/𝜌
𝛼𝑞𝜌−1

𝑢𝑐(𝑞, 𝑐) =
(
𝛼𝑞𝜌 + (1 − 𝛼)𝑐𝜌

) (1−𝜌)/𝜌(1 − 𝛼)𝑐𝜌−1.

The FOC for 𝑞0 is

𝑢𝑞(𝑞0, 𝑐) = 𝑟 · 𝑢𝑐(𝑞0, 𝑐).
𝛼𝑞𝜌−1 = 𝑟 · (1 − 𝛼)𝑐𝜌−1( 𝑞
𝑐

)𝜌−1
=

1 − 𝛼
𝛼

𝑟

𝑞 =
(1 − 𝛼

𝛼
𝑟
)1/(𝜌−1)

𝑐.

Combining this with the budget constraint gives a demand function:

𝑞 =
(1 − 𝛼

𝛼
𝑟
)1/(𝜌−1)(𝑚 − 𝑟𝑞)

𝑞 −
(1 − 𝛼

𝛼
𝑟
)1/(𝜌−1)

𝑟𝑞 =
(1 − 𝛼

𝛼
𝑟
)1/(𝜌−1)

𝑚[
1 +

(1 − 𝛼
𝛼

𝑟
)1/(𝜌−1)

𝑟
]
𝑞 =

(1 − 𝛼
𝛼

𝑟
)1/(𝜌−1)

𝑚

𝑞 =

( 1−𝛼
𝛼 𝑟

)1/(𝜌−1)[
1 +

( 1−𝛼
𝛼 𝑟

)1/(𝜌−1)
𝑟
]𝑚

𝑞 =

( 1−𝛼
𝛼 𝑟

)−1/(𝜌−1) ( 1−𝛼
𝛼 𝑟

)1/(𝜌−1)( 1−𝛼
𝛼 𝑟

)−1/(𝜌−1)
[
1 +

( 1−𝛼
𝛼 𝑟

)1/(𝜌−1)
𝑟
]𝑚

𝑞 =
𝑚( 1−𝛼

𝛼

)1/(1−𝜌)
𝑟1/(1−𝜌) + 𝑟

or,
𝑞0(𝑝, 𝑏, 𝑚) = 𝐴0𝑚
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where
𝐴0 ≡

[ (1 − 𝛼
𝛼

)1/(1−𝜌)
𝑟1/(1−𝜌) + 𝑟

]−1
.

The FOC for 𝑞1 is, by symmetry:

𝑞 =
(1 − 𝛼

𝛼
(𝑝 + 𝑟)

)1/(𝜌−1)
𝑐.

And the demand function is:

𝑞 =
(1 − 𝛼

𝛼
(𝑝 + 𝑟)

)1/(𝜌−1)(𝑚 + (𝑏 − 𝑞)𝑝 − 𝑟𝑞)

𝑞 −
(1 − 𝛼

𝛼
(𝑝 + 𝑟)

)1/(𝜌−1)(𝑝 + 𝑟)𝑞 =
(1 − 𝛼

𝛼
(𝑝 + 𝑟)

)1/(𝜌−1)(𝑚 + 𝑝𝑏 − 𝑟𝑞)[
1 +

(1 − 𝛼
𝛼

(𝑝 + 𝑟)
)1/(𝜌−1)(𝑝 + 𝑟)

]
𝑞 =

(1 − 𝛼
𝛼

(𝑝 + 𝑟)
)1/(𝜌−1)(𝑚 + 𝑝𝑏)

𝑞 =

( 1−𝛼
𝛼 (𝑝 + 𝑟)

)1/(𝜌−1)[
1 +

( 1−𝛼
𝛼 (𝑝 + 𝑟)

)1/(𝜌−1)(𝑝 + 𝑟)
] (𝑚 + 𝑝𝑏)

𝑞 =

( 1−𝛼
𝛼 (𝑝 + 𝑟)

)−1/(𝜌−1) ( 1−𝛼
𝛼 (𝑝 + 𝑟)

)1/(𝜌−1)( 1−𝛼
𝛼 (𝑝 + 𝑟)

)−1/(𝜌−1)
[
1 +

( 1−𝛼
𝛼 (𝑝 + 𝑟)

)1/(𝜌−1)(𝑝 + 𝑟)
] (𝑚 + 𝑝𝑏)

𝑞 =
𝑚 + 𝑝𝑏( 1−𝛼

𝛼

)1/(1−𝜌)(𝑝 + 𝑟)1/(1−𝜌) + 𝑝 + 𝑟

or,
𝑞1(𝑝, 𝑏, 𝑚) = 𝐴1𝑚 + 𝐴1𝑝𝑏

where
𝐴1 ≡

[ (1 − 𝛼
𝛼

)1/(1−𝜌)(𝑝 + 𝑟)1/(1−𝜌) + 𝑝 + 𝑟
]−1

.

A.2.1 How does the benchmark affect the intensive margin?

Assuming benchmark does not change the choice of facet/solution:

𝑑𝑞1

𝑑𝑏
=

𝑝( 1−𝛼
𝛼

)1/(1−𝜌)
𝑝1/(1−𝜌) + 𝑝

=

[ (1 − 𝛼
𝛼

)1/(1−𝜌)
𝑝𝜌/(1−𝜌) + 1

]−1

> 0.
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That means raising the benchmark always increases the quantity. In other words, low-
ering the benchmark always increases conservation. This is because raising the bench-
mark is a pure income effect, so the agent wants to consume more of both goods (the
resource and the numeraire).

Of course the other possibility is that raising the benchmark induces the agent to
choose a solution on a different facet of the budget constraint. And the lower the bench-
mark, the less likely the “marginal” solution is to beat the “not participate” solution, so
the quantity will increase.

A.2.2 How does the benchmark affect the extensive margin?

There are four possible solutions:

𝑞0 =

{
𝐴0𝑚 𝑞0 > 𝑏

𝑞1 =

{
𝐴1𝑚 + 𝐴1𝑝𝑏 𝑞1 < 𝑏

𝑞2 = 0

𝑞3 = 𝑏

Set aside the question of whether 𝑞0 and 𝑞1 exist; assume they do. When is 𝑞1 ≻ 𝑞0?

𝑢(𝑞1; 𝑏, 𝑝) > 𝑢(𝑞0; 𝑏, 𝑝)(
𝛼(𝑞1)𝜌 + (1 − 𝛼)𝑐(𝑞1)𝜌

)1/𝜌
>

(
𝛼(𝑞0)𝜌 + (1 − 𝛼)𝑐(𝑞0)𝜌

)1/𝜌

If 𝜌 > 0:

𝛼(𝑞1)𝜌 + (1 − 𝛼)𝑐(𝑞1)𝜌 > 𝛼(𝑞0)𝜌 + (1 − 𝛼)𝑐(𝑞0)𝜌

𝛼(𝑞1)𝜌 + (1 − 𝛼)(𝑚 + (𝑏 − 𝑞1)𝑝 − 𝑟𝑞1)𝜌 > 𝛼(𝑞0)𝜌 + (1 − 𝛼)(𝑚 − 𝑟𝑞0)𝜌

𝛼(𝐴1𝑚 + 𝐴1𝑝𝑏)𝜌 + (1 − 𝛼)(𝑚 + 𝑝𝑏 − (𝑝 + 𝑟)(𝐴1𝑚 + 𝐴1𝑝𝑏))𝜌 > 𝛼(𝐴0𝑚)𝜌 + (1 − 𝛼)(𝑚 − 𝑟𝐴0𝑚)𝜌

𝛼(𝐴1𝑚 + 𝐴1𝑝𝑏)𝜌 + (1 − 𝛼)(𝑚 + 𝑝𝑏 − (𝑝 + 𝑟)𝐴1𝑚 − (𝑝 + 𝑟)𝐴1𝑝𝑏)𝜌 > 𝛼(𝐴0𝑚)𝜌 + (1 − 𝛼)(𝑚 − 𝑟𝐴0𝑚)𝜌

If 𝜌 < 0 the inequality is reversed.
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Taking the derivative of the left-hand side with respect to b:

𝑑

𝑑𝑏
(𝐿𝐻𝑆) =

𝑑

𝑑𝑏
𝛼(𝐴1𝑚 + 𝐴1𝑝𝑏)𝜌 + 𝑑

𝑑𝑏
(1 − 𝛼)(𝑚 + 𝑝𝑏 − (𝑝 + 𝑟)𝐴1𝑚 − (𝑝 + 𝑟)𝐴1𝑝𝑏)𝜌

= 𝛼𝜌(𝐴1𝑚 + 𝐴1𝑝𝑏)𝜌−1𝐴1𝑝 + (1 − 𝛼)𝜌(𝑚 + 𝑝𝑏 − (𝑝 + 𝑟)𝐴1𝑚 − (𝑝 + 𝑟)𝐴1𝑝𝑏)𝜌−1(1 − (𝑝 + 𝑟)𝐴1)𝑝
= 𝜌𝑝

[
𝛼(𝐴1𝑚 + 𝐴1𝑝𝑏)𝜌−1𝐴1 + (1 − 𝛼)(𝑚(1 − (𝑝 + 𝑟)𝐴1) + 𝑝𝑏(1 − (𝑝 + 𝑟)𝐴1))𝜌−1(1 − (𝑝 + 𝑟)𝐴1)

]
= 𝜌𝑝

[
𝛼(𝑚 + 𝑝𝑏)𝜌−1(𝐴1)𝜌 + (1 − 𝛼)

(
𝑚 + 𝑝𝑏(1 − (𝑝 + 𝑟)𝐴1))𝜌−1)(1 − (𝑝 + 𝑟)𝐴1)

]
We know that 1−(𝑝+𝑟)𝐴1 > 0 by the definition of 𝐴1, so this derivative is positive if 𝜌 > 0
and negative if 𝜌 < 0. Therefore, the left-hand side of the above inequality is increasing
in 𝑏 when 𝑞 and 𝑐 are substitutes (𝜌 > 0) and decreasing when they are complements
(𝜌 < 0). So when 𝜌 > 0, the inequality holds for more parameter values, and raising
the benchmark makes the agent more likely to become marginal (choose 𝑞1 over 𝑞0). But
when 𝜌 < 0, the inequality is reversed, so the left-hand side decreasing in 𝑏 also makes the
agent more likely to become marginal. As a result, lowering the benchmark will always
induce fewer agents to participate.

B Covariates included in LASSO-Selection

The following variables, which are collected prior to randomization, are fed into each
double-selection LASSO after being interacted with 2 survey visit (i.e., month) indicators:

• Meter Reading

– Average daily hours of pumping in the first month

– Average daily energy use in the first month (calculated)

– The natural logs of the above two variables (imputed to zero if the argument is
0)

• Baseline Survey

– 121 Village indicators

– Total wells on the primary farm

– Whether deepest well has ever been deepened

– Water level on deepest well

– Whether deepest well went dry the previous Kharif season

48



– Depth of deepest well

– Indicators for deepest well being borewell or dug-cum-borewell (dugwell is
omitted well type)

– Pump power for pump on deepest well

– Number of crops cultivated

– Indicator for above-median number of crops cultivated

– Fraction of farmed area planted with each of: cotton, sorghum or millet, ground-
nut, and pulses

– Total self-reported hours of irrigation (a) on primary farm and (b) off primary
farm, previous Kharif season

– Indicator for whether purchased water for irrigation during previous Kharif
season

– Indicators for typical use of raised beds, farm bunds, and low/zero-tillage
practices (common water conservation practices) and for use drip irrigation
previous Kharif

– Years of education (household head)

– Above-median years of education (household head)

– Indicators for Hindu and Muslim (omitted religion is other)

– Indicator for Scheduled Caste/Scheduled Tribe/Other Backwards Caste

• Groundwater Prospects Maps

– The distance to the nearest recharge structure, fracture, escarpment, water body,
observation well, mapped dugwell, mapped handwell, mapped borewell, canal,
dyke, railway, stream, and road and their natural logs

– The number of recharge structures, fractures, canals, and streams and the length
of fractures in 1, 2, 3, 4 and 5 km radii

– The fraction of land area made up of each of 42 rock types in 1, 2, 3, 4 and 5 km
radii

• Satellite Images

– The natural log of the seasonal differences in EVI and NDVI in the 2021-22 rabi
season

– the mean EVI and NDVI in November 2022
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C Robustness to Attrition

Appendix Table 7 reports the response rates by treatment status and meter reading visit.
While randomization was assigned at baseline, neither the farmer nor the surveyor was
aware of treatment assignment until the end of the first visit shown (i.e., the “Random-
ization visit”). Thus, attrition at the first visit is not due to random assignment. However,
following randomization, attrition increases at each subsequent meter reading visit, and
differentially more so for the control group.

We examine the robustness of our results to attrition in two ways. First, we examine
evidence that different types of people left the experiment in treatment and control. Sec-
ond, we show that the Lee bounds on the impact of the conservation payments program
on hours of irrigation do not substantially reduce our estimates.

We begin by examining the evidence on whether attrition led to baseline imbalance
across treatment. Table 1 in the text shows that the treatment and control farmers are
well balanced on observable baseline characteristics (p-value for joint orthogonality test
is 0.93). Second, we focus on the characteristics of those who attrit after randomization.
Appendix Table 8 shows that we cannot reject that these attriters’ baseline characteris-
tics are jointly orthogonal to treatment status (we also focus specifically on differential
attrition by baseline irrigation hours in this table, and find no evidence on this dimen-
sion). These checks show that there are not observable differences between the treatment
and control groups either among those who attrit or among those who remain in the the
sample.

We next turn to the possibility that unobservable differences in attritors are driving
our treatment effects. Specifically, we follow Lee (2009) in bounding the treatment effect
of conservation payments on hours of irrigation under a monotonicity assumption: that
no one who attrited in control would have been more likely to attrit in treatment. Because
our outcome data are a panel, we remove the respondents in the treatment group with
the highest (lowest) average hours of irrigation across the intervention period and then
re-estimate Equation 3 without controls to find the lower (upper) bound of the treatment
effect. We trim the treatment group by 7.2%, which is the difference in attrition rates
(6.7%) between the two groups as a proportion of the retention rate between the ran-
domization visit and the fourth meter reading in the treatment group (92%). Appendix
Table 9 shows that even the upper bound on the treatment effect is negative and less
than three hours different from the ITT estimate, although it not statistically different
from zero (bounding also sacrifices statistical precision because rich controls cannot be
included). The upper bound is correct only if differential attrition is driven by the control
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farmers who irrigate the fewest hours. However, Table 8 shows that baseline irrigation
hours tend to be lower among retained control farmers but not among treatment farmers,
suggesting that control farmers who irrigate more than average hours are driving dif-
ferential attrition (baseline irrigation is strongly positively correlated with intervention
period irrigation). Thus, our ITT estimates are likely to be biased upward in the positive
direction. In fact, we find that the lower bound of the conservation payments impact –
which is correct if the control farmers who attrit are the highest irrigators – is -19.2 hours,
more than 13 hours below the ITT estimate. Overall, these bounds demonstrate that it is
very unlikely that differential attrition is driving the result that conservation payments
reduce groundwater consumption.

D Demand Estimation

We now use the experimental variation introduced by our program to estimate the slope
of demand for groundwater irrigation. The idea is that in a program of payments for
voluntary conservation, not all farmers are actually marginal to the incentive, unlike as
they would be under a universal volumetric electricity price or groundwater pumping
fee. Even for farmers offered payments, the marginal price is zero for those who pump for
more hours than the benchmark, as well as for those who reach the maximum payment.

As a result, the treatment effect depends on specific design parameters of our pro-
gram: price, benchmarks, and maximum payments. In contrast, a demand model gives
us potentially more generalizable information as to how the farmers in our sample would
adjust their irrigation behavior under other types of programs.

To estimate demand, we estimate instrumental variables regressions of irrigation on
price, instrumenting for price with the experimental treatment groups:

𝑌𝑖𝑡 = 𝛼𝑡 + 𝛽𝑝𝑖𝑡 + 𝛾′X𝑖𝑡 + 𝜀𝑖𝑡 , (5)

where 𝑝𝑖𝑡 ∈ {0, 50, 100} represents the effective marginal price of an hour of irrigation
faced by farmer 𝑖 in month 𝑡. Effective marginal price in each month is zero for control-
group farmers, for treatment-group farmers who did not receive a payment, and for
treatment-group farmers who reached the maximum payment. For farmers who received
a payment that was less than the maximum, their effective marginal price is the price
offered to them, depending on their sub-treatment group (50 or 100 INR per hour).

To boost precision while avoiding overfitting and weak instruments concerns, we use
the instrumental variables LASSO method of Belloni et al. (2012). Our set of candidate
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instruments consists of indicators for each of the two price sub-treatments and their in-
teractions with baseline characteristics. We again choose covariates using double-LASSO,
and cluster standard errors by randomization pair.

Intuitively, IV estimates take our ITT estimates and scale them by the fraction of the
sample who was in position to respond to the price incentive. Benchmarks were set too
low for many farmers to reach, and too high for other farmers, such that they would
have reached the maximum payment even without behavior change. The IV estimates
instead attribute the full program response to the farmers for whom benchmarks were
set appropriately enough to affect their behavior. This method is in the spirit of quasi-
experimental estimates of the elasticity of taxable income from non-linear budget sets (as
summarized by Saez et al., 2012) and of electricity demand (Ito, 2014).

D.1 Results

Table 10 reports results. Column (1) reports the first-stage relationship for an IV specifica-
tion with only one instrument: overall eligibility for the conservation payments program.
The estimate says that the average effective marginal price in the treatment group was 42
INR per hour.22 This first-stage relationship is strong, with a very large F-statistic.

Column (2) shows the IV estimate with this one instrument and no covariates, while
specifications in columns (3) and (4) add instruments and covariates. Moving across the
table, first-stage F-statistics remain strong, while the IV estimates gain precision. Our
preferred estimate is in column (4), in which both instruments and covariates are selected
by double LASSO. The coefficient of −0.12 implies that average monthly irrigation hours
fall by 1 hour for every 8 INR increase in the hourly price. At the middle price of 50, and
the control mean of irrigation hours, this implies a price elasticity of 0.13.

One limitation of these IV estimates is that they may overstate the true price elasticity.
The exclusion restriction is that the program affected irrigation only through the effective
marginal price at the end of the meter reading period. This assumption will be violated
if the program affected irrigation for farmers who do not end up facing positive marginal
prices in a given month – for example, if they attempted to conserve below the bench-
mark but failed to reach their target. This is a fundamental limitation of this method for
estimating demand.

However, we can still bound the price elasticity using the IV and reduced-form es-
timates. The IV estimate loads the entire reduced-form effect of the program onto the

22This value represents a weighted average of the proportion of each group that was marginal, multiplied
by the price offered. We separately calculate that 58 percent of farmer-months in the sample faced a positive
marginal price.
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fraction of farmers with a positive effective marginal price. If some farmers change their
behavior but are not observed in this group, then the true proportion of farmers affected
by the program is greater than indicated by the first stage. On the other hand, it is unlikely
that all farmers in the treatment group were affected by the program, so the true propor-
tion is less than 1. The true price elasticity is then bounded above by the IV estimate, and
bounded below by the reduced-form estimate: (0.16, 0.20).23

E Supplementary Tables and Figures

23Scaling the ITT effect of −11 hours by the average price offered in the treatment group (75 INR per hour)
gives a reduced-form effect of −0.15 hr/INR. At the middle price of 50, and the control mean of irrigation
hours, this implies a price elasticity of 0.16.
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Figure 9: Predicting Pumping in the Control Group

Notes: Monthly hours of irrigation plotted against hours of irrigation before the intervention, for
the control group. All values are scaled to a 31-day rate.
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Table 7: Sample Retention in Treatment and Control Groups over Time

Response rates in control group Difference between treatment and control

(1) (2)

A. Response rates
Randomization visit 0.844 0.012

( 0.364) ( 0.020)
[ 0.557]

Meter reading 1 0.764 0.052**
( 0.425) ( 0.023)

[ 0.022]
Meter reading 2 0.738 0.064***

( 0.440) ( 0.023)
[ 0.006]

Meter reading 3 0.722 0.067***
( 0.448) ( 0.024)

[ 0.005]

N 673 1308

Notes: This table summarizes attrition in the control and conservation payments treatment after baseline at each of four visits: the
initial intervention visit (before randomization), and then each of three meter reading visits. The first column reports the mean and
standard deviation for the control group of the farmers reached at each visit shown in the left column. Column (2) reports the estimated
differences between treatment and control in the fraction of farmers reached at each visit shown in the left column. The coefficients
are from a regression of an indicator from being reached on an indicator of being randomly assigned to the conservation payments
treatment with no controls. Standard errors clustered at the randomization pair level are in parentheses; per comparison P-values are
in square brackets.
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Table 8: Baseline covariates do not predict differential retention rates in treatment and control

(1) (2) (3)

Conservation Credits 0.067∗∗∗ 0.039 0.13
[0.018] [0.028] [0.12]

Baseline irrigation hours -0.00046∗ -0.00037
[0.00024] [0.00027]

Baseline irrigation hours
× Conservation Credits

0.00038 0.00035
[0.00031] [0.00036]

Control Mean 0.86 0.86 0.86
F-statistic 1.46 1.26
P-value 0.23 0.19
Baseline Controls x Treatment X
N Clusters 541 541 540
N Farmers 1,111 1,111 1,110

Notes: This table summarizes how attrition in the control and conservation payments treatment depends on baseline covariates. Each
column reports coefficient estimates from regressions of an indicator from being reached at the third meter-reading visit (i.e., being in
the analysis sample) on treatment assignment. In columns 2-4, we include covariates and their interaction with treatment assignment:
column 1 includes baseline survey covariate, column 2 includes irrigation hours in the month prior to randomization (available for
part of the sample), and column 3 includes both baseline covariates and irrigation hours. We report the F-statistics and P-values from
a test of the joint significance of all included covariates interacted with treatment assignment: in all specifications, covariates fail to
differentially predict retention across treatment assignment. Standard errors clustered at the randomization pair level are in brackets.

Table 9: Lee Bounds on Impact of Conservation Payments Treatment

ITT Estimate Upper Bound Lower Bound

(1) (2) (3)

Payment Eligibility -5.97∗ -2.77 -19.2∗∗∗

[3.46] [3.53] [3.06]

Control Mean 46.59 46.59 46.59
N Clusters 495 479 471
N Farmers 989 951 951
N Observations 2,967 2,853 2,853

Notes: This table shows Lee bounds on the main treatment effect. Each column reports coefficient estimates from regressions of an
indicator from being reached at the third meter-reading visit (i.e., being in the analysis sample) on treatment assignment. Standard
errors clustered at the randomization pair level are in brackets.
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Table 10: Demand for Groundwater Irrigation: Instrumental Variables Estimation

First Stage IV

(1) (2) (3) (4)
Marginal Price

(INR/Hour)
-0.14∗ -0.13∗ -0.12∗∗

[0.080] [0.078] [0.049]

Payment
Eligibility

42.2∗∗∗

[1.44]
Outcome Control Mean 0.00 46.59 46.59 46.59
CD Wald F-stat 1,562.17 900.71 17.35
Fixed Effects Month Month LASSO
Controls LASSO
Instruments Treatment Price Sub-Treatments LASSO
N Instruments 1 2 7
N Clusters 494 494 494
N Farmers 989 989 989 989
N Observations 2,967 2,967 2,967 2,967

Notes: The sample includes farmer-months among farmers who remained in the experiment until the final meter
reading. The outcome is the monthly hours of irrigation in each of the three intervention period survey rounds. The
marginal price of an hour of irrigation is instrumented using overall eligibility for conservation payments in Column
2, using all four sub-treatment arms in Column 3, and using additional high-dimensional instruments selected by
double-LASSO in Column 4. Standard errors clustered at the randomization pair level are in brackets.

Table 11: Intent-to-Treat Impacts of Conservation Payments on Proxies for Crop Yields

EVI NDVI

(1) (2) (3) (4) (5) (6) (7) (8)
Log Diff. Diff. Mean Monthly Log Diff. Diff. Mean Monthly

Payment
Eligibility

0.076 0.20 -0.023 0.0089 0.066 0.0063 0.00073 0.0089
[0.047] [0.17] [0.039] [0.026] [0.051] [0.0048] [0.0034] [0.026]

Control Mean -0.58 0.89 1.07 0.96 -2.97 0.07 0.25 0.96
Lasso Controls X X X X X X X X
N Clusters 615 615 615 488 615 615 615 488
N Farmers 973 973 973 973 973 973 973 973
N Observations 973 973 973 2,919 973 973 973 2,919

Notes: The sample includes all farmers who completed all three meter reading survey rounds during the intervention. The outcomes include
various transformations of EVI and NDVI during the 2022-23 rabi season, including: the natural log of the maximum value less the average of the
first four weeks; the maximum value less the average of the first four weeks; the seasonal mean; and the monthly mean. Standard errors clustered
at the randomization pair level are in brackets.
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Table 12: Counterfactual Payments Under Alternative Benchmark Scenarios

Average payment
(INR per participant per

month)

Actual payments, treatment group 1,238

Counterfactual payments, control group
1. Benchmark = Pre-program value 1,872
2. Benchmark predicted from pre-program value 1,022
3. Benchmark predicted from basic characteristics 1,325
4. Benchmark predicted using rich characteristics 1,323
5. Benchmark set as in the treatment group 1,030
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