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Abstract

Energy efficiency is a global priority, but investments in energy efficiency do not always
deliver the expected benefits. This paper studies micro-irrigation systems (MIS), a technology
thought to reduce the energy required for irrigation by as much as 70 percent. We installed
individual meters to directly measure the energy consumption of several hundred farmers in
Gujarat, India, and linked this meter data with survey data to yield a comprehensive view into
energy use patterns in smallholder agriculture. We document two facts. One, energy use varies
widely across farmers, and this variation is unexplained by factors such as farm area or village
geography. Two, MIS users in our sample consume 30 to 40 percent more energy than non-
users of MIS. This difference does not appear to be explained by observable differences across
farmers nor by rebound effects, suggesting that the energy impacts of MIS under real-world
conditions may be disappointing. While these findings are not causal, they highlight a need for
increased attention to details of implementation and further research into the actual benefits of
resource-conserving technologies.
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1 Introduction

Energy efficiency is a global priority, as it has the potential to slow carbon emissions and help
expand energy access. However, investments in energy efficiency do not always deliver the ex-
pected benefits. One reason is that new technologies do not always deliver promised efficiency
benefits under real-world conditions. Many technologies require complementary investments or
behavioral changes to operate as designed, and users may not always dedicate the needed funds
and efforts. Another reason may be the rebound effect, in which efficiency improvements from
new technologies can encourage greater energy consumption, which offsets some of the gains.
Evidence from the United States suggests that many technological energy efficiency investments
deliver less benefit than expected (Fowlie et al., 2018) , and also that the rebound effect is rel-
atively small in most situations (Gillingham et al., 2015). However, less evidence is available
from developing countries, where additional constraints could make suboptimal operation more
common and rebound effects larger.

This paper explores the energy efficiency gains from micro-irrigation systems (MIS) in small-
holder agriculture in Gujarat, India. MIS, referring to both drip and sprinkler irrigation, is a
globally significant technology. Many governments heavily subsidize MIS, including Australia,
Nigeria, Rwanda, and our setting of Gujarat, and several other states in India have considered
large expansions in MIS subsidies. In the last decade, Gujarat alone disbursed approximately
80 million USD in MIS subsidies annually (Viswanathan et al., 2022). While the justifications
for these subsidies often center around groundwater conservation, many MIS subsidy programs
explicitly target energy conservation as well,1 and academic and private-sector observers alike
regularly emphasize the potential energy saving co-benefits of MIS adoption (Blog at Jains, 2015;
Shah, 2020). Understanding whether, and under what circumstances, energy conservation can
help justify the expense of promoting MIS adoption is critical for governments to make informed
policy decisions.

MIS is thought to reduce the energy consumption required for irrigation by as much as 70
percent (Kumar and Palanisami, 2010; McCarthy et al., 2020; Narayanamoorthy et al., 2018; Rao
et al., 2017) by efficiently delivering water in small doses directly to crop root zones, thereby re-
ducing groundwater pumping. However, if less energy or water is required to irrigate the same
area of land, farmers may respond by irrigating more land in the same season or farming in ad-
ditional seasons (e.g., Dagnino and Ward 2012; Pfeiffer and Lin 2014). This behavioral response,
an example of a rebound effect, may benefit the farmer but would reduce or even reverse the wa-
ter and energy savings. Moreover, even if MIS leads to water conservation, the potential energy
efficiency gains from MIS may not be realized without complementary technology (such as a
right-sized pump) or ongoing maintenance (National Center for Appropriate Technology, 2023).

To study the energy efficiency gains from MIS, we use individual meters to directly measure
energy consumption during the growing season for a group of several hundred farmers. We then
link this novel dataset of pump-level energy consumption to detailed survey data, producing a
uniquely detailed window into energy use patterns in smallholder agriculture. Direct measure-
ments of energy or water use are rare in smallholder agriculture; most previous studies rely on
self-reported irrigation intensity or engineering estimates from ideal environments (Kumar and
Palanisami, 2010; Raman, 2009; Sinha et al., 2017; Surendran et al., 2016). Our data is also likely

1For example, the USDA’s Environmental Quality Incentives Program (EQIP) and California’s SWEEP program both
provide financial support for drip irrigation with a stated aim of reducing greenhouse gas emissions (California Depart-
ment of Food and Agriculture, 2025; Natural Resources Conservation Service, 2022), while in India the Pradhan Mantri
Krishi Sinchayee Yojana: Per Drop More Crop initiative also emphasizes the optimal use of energy (National Portal of
India, 2018).
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more complete than administrative electricity data, since we are able to cover some of the many
electricity connections that are unlawful or otherwise unmetered.

These measurements yield two striking facts. First, there is enormous variation in energy
use across farmers. This variation covers three orders of magnitude and does not appear to be
explained by major observable factors such as farm area or village geography. Second, MIS users
in our sample consume 30 to 40 percent more energy than non-users of MIS. This basic fact would
seem to counter the common belief that MIS conserves energy. We propose and explore three
potential explanations for this fact: selection bias, rebound effects, and non-conservation.

We find little evidence for selection bias, at least from observable factors. In the absence of a
controlled experiment, we use Mahalanobis distance matching methods to try to create groups of
MIS users and non-users who are observationally as similar as possible. We find that MIS users
consume substantially more energy than non-users even after adjusting for a wide range of farm,
socioeconomic, and demographic characteristics, and even when comparing within the same
village. The same result persists across all specifications, including linear regression, nearest-
neighbor matching, and kernel matching algorithms. There may still be selection bias from
factors we were not able to measure in our survey, but the factors that seem likely to be most
important are accounted for.

We also find little evidence for a rebound effect in MIS. We investigate the rebound effect
by comparing how MIS affects energy use in two ways: per-hectare per-season (i.e., the direct
savings), and in total (i.e., the net energy savings, including any rebound effect). This first mea-
sure shows the true energy saving achieved by micro-irrigation in a real-world setting, while
the difference between the two measures reveals the impact of behavior changes on energy con-
sumption. We generally find that MIS users also consume 30 to 40 percent more energy on a
per-hectare basis, though this outcome is noisier and coefficients are sometimes smaller than for
total energy. This result suggests that increased cropped area does not explain the greater energy
use under MIS irrigation.

To try to further rule out selection bias from unobserved factors, we also explore a natural
experiment that generates a discontinuity in the price of MIS systems available to farmers. Gov-
ernment subsidy levels are based on discrete categories in landholding size, which creates two
similar groups of farmers above and below the discontinuity who face different prices for MIS
purchase. However, despite the higher prices faced for farmers just above the landholding size
cut-off, we do not see a discontinuous decrease in the probability of MIS use at the cut-off in our
data. A much larger dataset would be needed to take advantage of this potential research design.

Limited evidence for either selection bias or rebound effects points toward the third explana-
tion: non-conservation. It may indeed be true that MIS users consume more energy than tradi-
tional irrigators. MIS very well may conserve water, but it is possible that these water savings
are not translating into energy savings in the typical farmer’s installation. This situation could
arise if, for example, farmers do not invest in complementary technologies such as downsizing
their pumps or installing gravity-based storage tanks. It could also arise if farmers use water
with high mineral content or do not perform optimal maintenance, resulting in blockage and
over-pressurization.

These findings are merely correlational and not causal. Because there is no usable natural
experiment available in our setting, we cannot be sure that MIS users and non-users are system-
atically different in unobserved ways. Still, our data may be useful given the dearth of direct
measurements of energy consumption either specifically for MIS in India, or more broadly for
agriculture in developing countries.

The remainder of the paper proceeds as follows. Section 2 describes the setting and dataset.
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Sections 3 describes the basic facts in the data. Sections 4 and 5 describe the results from the
matching and regression discontinuity designs, respectively. Section 6 concludes.

2 Sample and Data

The study sample consists of farming households in the water-scarce region of Saurashtra in
Gujarat, India. An initial group of farmers were recruited from lists compiled by partner orga-
nization, the Agha Khan Rural Support Programme (AKRSP), while implementing two agricul-
tural development initiatives in Saurashtra: Farmer Interest Groups (FIGs) and Drip Pools (DPs).
FIGs are village-level groups formed with AKRSP support and trained in best practices for cot-
ton cultivation and natural resource management. Drip Pools are revolving zero-interest loan
mechanisms for the purchase of Drip Irrigation systems administered by AKRSP. Farmers on the
lists had expressed interest or participated in one of the two initiatives. In order to participate in
in the study, farmers were required to irrigate with groundwater2 using an electric pump,3 and
had to be willing to install a meter on their groundwater pumpset.When farmers had multiple
pumpsets, we selected the well with an electric pump that was used to irrigate their primary
farm. This yielded an inital sample of farming households who represent a group of farmers
who are broadly interested in micro-irrigation systems and would be likely to voluntarily adopt
MIS under the current subsidy regime.

In order to understand how micro-irrigation impacts energy use among this sample, we col-
lect two types of data over the 2018–2019 winter cropping season. First, we directly measure
irrigation intensity - our primary outcome of interest - using hours-of-use meters from the full
initial sample. Second, in order to identify plausibly exogenous variation in micro-irrigation
adoption, we surveyed a subset of these farmers regarding their MIS use, as well as agricultural,
demographic, and socioeconomic characteristics.

We measure energy use for irrigation with hours-of-use meters installed on the electric pump
starter of farmers’ pumpsets. The meters measure the total hours of irrigation done by the farmer,
and offer several advantages over electricity meters and water meters. First, they are inexpen-
sive (approximately one tenth of the cost of water meters, for example). Second, they are easy
and safe to install: in contrast to water meters which must be fit to an irrigation pipe and can
cause water blockages, a single hours-of-use meter can be used on nearly all pump starters in the
region. Third, while farmers tend to be suspicious of electricity metering (which they view as
a potential threat to existing unmetered and subsidized electricity supplies), hours-of-us meters
are widely accepted by farmers. Finally, hours-of-use can be converted into energy and water
consumption using field measurements. Meters were installed in October and read once per
month from November to March by AKRSP field staff using a tablet-based survey. This yields a
five-month panel of hours-of-irrigation for each farmer.

We complement the hours-of-irrigation dataset with a survey of 400 of the metered farmers
conducted at the conclusion of the growing season. The survey serves three key purposes. First,
we collect information that allows us to better interpret hours-of-use and convert it into energy
consumption. Second, the survey identifies which farmers use MIS. Finally, we collect informa-
tion on observable characteristics that may confound estimates of how MIS impacts energy use.
In particular, the survey data include whether or not a farmer has used MIS, fixed characteristics

2We defined farmers as irrigating using groundwater if they met three criteria: they had irrigated their primary farm
the previous winter season, they planned to irrigate their primary farm the next winter season, and they irrigated their
primary farm from a groundwater source.

3Farmers were required to use an electric pump as hours-of-use meters cannot be installed on diesel pumps.
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that predict MIS use, such as landholding size and household education levels, as well as poten-
tial behavioral outcomes such as area cropped and crops chosen. We record the horsepower of
the metered pump in order to convert hours of use into energy consumption using the formula

E =
P
η

t

where E is energy consumed, t is duration of pump operation, P is the power rating of the pump’s
motor, and η is the motor efficiency.

We use these data to construct two outcomes for measuring the impacts of MIS using this
dataset. First, we measure total impact of MIS on energy consumption using the natural log of
monthly kWh consumed. This outcome is undefined for the seven farmers who did not irrigate,
three of whom were MIS users. Second, we measure the “mechanical” effect of MIS on energy
consumption per cropped area using the natural log of monthly kWh consumed per hectare
cultivated. This outcome is undefined for the the 30 farmers for whom we are missing data on
cultivated area.

3 Basic facts

3.1 Summary statistics

As a first look at our survey data, Table 1 shows the basic characteristics of the farmers in our
sample. They are predominantly smallholder farmers, with a mean area of their primary farm
of just 1.5 hectares. (For context, the Indian government typically defines farms holding less
than 2 hectares as “small and marginal farmers”.)4 Cultivated area is a bit larger than farm size
on average, reflecting that some farmers are able to harvest one crop and grow another on the
same land within the year. Nearly all irrigate, about two-thirds used micro-irrigation (MIS), and
the vast majority grow cotton (which does not exclude also growing other crops). Most farms
have one well, but some have two or three;5 the average depth of water in these wells was 23
meters. About half of farmers provide water to other farms from their wells, while only one in
five receive water from other farms.

Turning to socioeconomic and demographic characteristics, the vast majority of farmers’ houses
are made of high-quality materials (pucca floors and roofs) and are electrified, though only about
one-third have a private water tap. On average, the farms have about four cows or buffalo,
one bullock, and two pieces of mechanized farm equipment. Nearly all own their land rather
than rent; about two-thirds earned income from businesses besides the farm, and about one-
third earned income from working outside the farm. Most households in our sample identify
as Hindu and one of the “scheduled caste/scheduled tribe/other backward caste” designations.
Most are literate and have at least primary education, while about one-third have post-secondary
education.

4A caveat here is that we only gathered data on each farmer’s self-defined primary farm. Some farmers may have
multiple non-contiguous farms, for a greater landholding total.

5Farmers with more than three wells on their primary farm were excluded from the survey collection.
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Mean SD Min Max N

A. Agricultural statistics
Farm size (ha) 1.45 0.99 0.16 6.80 400
Cultivated area (ha) 1.76 1.54 0.00 10.20 400
Irrigated (share) 0.98 0.13 0.00 1.00 400
Used MIS (share) 0.69 0.46 0.00 1.00 400
Cotton grown (share) 0.91 0.29 0.00 1.00 400
Active wells on primary farm 1.30 0.59 0.00 3.00 400
Groundwater depth (approximate, meters) 23.15 35.65 0.00 213.36 338
Provides water to other farm(s) 0.47 0.50 0.00 1.00 400
Receives water from other farm(s) 0.20 0.40 0.00 1.00 400
B. Socioeconomics
Pucca floor (share) 0.80 0.40 0.00 1.00 400
Pucca roof (share) 0.95 0.21 0.00 1.00 400
Household electrified (share) 0.95 0.21 0.00 1.00 400
Household has private water tap (share) 0.34 0.48 0.00 1.00 400
Cows or buffalo 3.79 3.60 0.00 35.00 400
Bullocks 0.91 0.89 0.00 4.00 400
Mechanized farm equipment 1.77 1.43 0.00 12.00 400
Earned agricultural income from own land (share) 0.97 0.17 0.00 1.00 400
Earned agricultural income from rented land (share) 0.03 0.18 0.00 1.00 400
Earned sharecropping income (share) 0.15 0.36 0.00 1.00 400
Earned labor income (share) 0.34 0.48 0.00 1.00 400
Earned business income (share) 0.70 0.46 0.00 1.00 400
C. Demographics
Household size 6.07 2.81 1.00 24.00 399
Religion: Hindu (share) 0.95 0.23 0.00 1.00 400
Religion: Muslim (share) 0.00 0.00 0.00 0.00 400
Caste: SC/ST/OBC (share) 0.81 0.39 0.00 1.00 400
Head of household literate (share) 0.91 0.29 0.00 1.00 400
No education 0.01 0.10 0.00 1.00 400
Primary or secondary education (share) 0.71 0.52 0.00 2.00 400
Post-secondary education (share) 0.31 0.46 0.00 1.00 400

Table 1: Summary statistics.

Note: This table displays summary statistics for the sample of farmers with both baseline data and hours-
of-use data.
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3.2 Energy consumption varies wildly

Next, we show a first look at our meter data. Panel (a) of Figure 1 plots the distribution of
pumping time among farmers in our sample as a histogram.6 The horizontal axis in this graph
is shown on a logarithmic scale. Pumping time varies enormously across farmers: The mode is
around 20 hours per month, but many farmers pump more than 100 or fewer than 3 hours per
month. Means and standard deviations are listed in Table 2; the mean of pumping time is 33.3
hours per month.

Perhaps surprisingly, this wide variance cannot be explained by cultivated area. Panel (b)
of Figure 1 plots the distribution of pumping time per hectare cultivated. (Cultivated area is
defined as the sum of the areas of all crops planted, so it can be greater than one.) This histogram
is equally wide, and in fact the variance of this ratio is larger.

Our main outcome of interest, however, is not pumping time but rather energy use. To cal-
culate energy consumption, we use the formula in Section 2 along with survey data on each
pump’s rated brake horsepower and assuming a 74% motor efficiency.7 Panels (c) and (d) of Fig-
ure 1 plot the distribution of energy consumption, and energy consumption per cultivated area,
across farmers. The distribution remains quite wide and are not explained by cultivated area. As
Table 2 shows, the average farmer in our sample uses 172 kilowatt-hours (kWh) of electricity per
month.

Full Sample No MIS Use MIS Difference=0
Mean SD Mean Mean p-value

A. Pumping time
Pumping time (hours/month) 33.27 47.31 31.02 34.28 0.57
Ln(Pumping time) 2.73 1.38 2.47 2.84 0.02
Pumping time per area cropped (hrs/mo/ha) 28.29 74.20 30.33 27.33 0.78
Ln(Pumping time per area cropped) 2.34 1.50 2.17 2.42 0.15
B. Energy consumption
Energy used (kWh/month) 172.00 265.53 163.13 175.98 0.68
Ln(Energy used) 4.27 1.45 4.01 4.39 0.02
Energy per area cropped (kWh/month/ha) 135.74 291.49 137.73 134.81 0.94
Ln(Energy per hectare cultivated) 3.89 1.54 3.71 3.98 0.13

Sample size
Number of individuals 400 124 276

Table 2: Hours of electricity used in full sample, and by MIS-usage.

3.3 MIS users consume more energy

To complete our roundup of basic facts, we break down energy consumption by whether farmers
use MIS. Panel (a) of Figure 2 plots the kernel density of energy consumption for farmers who
use MIS (thick dashed line in red) and those who do not (thin solid line in blue). While both
distributions have high variance, the distribution of energy use for MIS users is shifted noticeably
to the right, indicating that they consume more energy than non-users of MIS. Table 2 confirms
numerically that MIS users consume more energy on average: 176 kWh per month vs. 163 for

6Pumping time is shown in hours per month; to construct this we sum the hours of use measured across all four
monthly meter readings, divide by the number of days elapsed between meter installation and the final meter reading,
and scale to month.

7Motor efficiency is unknown without intensive physical testing. Absent this information, we simply assign all pumps
a central value from the literature. Because the assumed value is a multiplicative factor, different choices will not affect
the results when outcome variables are in logarithms. Results could be biased if actual motor efficiency is correlated with
either brake horsepower or pumping time.
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(a) Distribution of pumping hours (b) Distribution of pumping hours per cultivated area

(c) Distribution of energy consumption (d) Distribution of energy consumption per cultivated area

Figure 1: Histograms of average energy consumption in the experimental sample

Note: Figure displays histograms of energy consumption over the winter 2018-19 cropping season. All his-
tograms are shown on a log scale. Panel (a) shows the distribution of average monthly pumping hours,
calculated as total hours at the final meter reading divided by the number of months the meter was read.
Panel (b) shows the distribution of average monthly pumping hours normalized by the total cultivated
area in the winter 2018-19 cropping season. Panel (c) shows the distribution of average monthly energy
consumed by the metered pump, and Panel (d) shows the distribution of average monthly energy con-
sumption normalized by cultivated area. The figures show that the distribution of energy consumed for
irrigation purposes is very dispersed, even after controlling for the total area cropped.
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non-users of MIS. In natural logs, the difference in means is 0.38, which can be interpreted as
approximately 38 percent greater energy consumption. A t-test rejects the idea that these log
means are the same at a 95 percent confidence level (p = 0.02).

Is this just because MIS users grow more crops? Panel (b) of Figure 2 shows the same compar-
ison for energy consumption per area cropped. The distribution of energy consumption for MIS
users is still shifted right relative to non-users of MIS, though the difference is not as noticeable.
Quantitatively, the difference in log means is no longer statistically significant (p = 0.13), but the
difference is still fairly large at 0.28. It seems that cultivated area might explain some, but not all,
of the difference in energy use among MIS users.

(a) Distribution of pumping hours (b) Distribution of pumping hours per cultivated area

(c) Distribution of energy consumption (d) Distribution of energy consumption per cultivated area

Figure 2: Histograms of average energy consumption in the experimental sample

Note: Figure displays kernel density plots of energy consumption for those with and without micro-
irrigation systems (MIS) over the winter 2018-19 cropping season. The x-axes of all plots are drawn on
a log scale. Panel (a) shows the distribution of average monthly pumping hours, calculated as total hours
at the final meter reading divided by the number of months the meter was read. Panel (b) shows the dis-
tribution of average monthly pumping hours normalized by the total cultivated area in the winter 2018-19
cropping season. Panel (c) shows the distribution of average monthly energy consumed by the metered
pump, and Panel (d) shows the distribution of average monthly energy consumption normalized by culti-
vated area. The figures show an overall shift to the right of energy use and energy use per hectare by MIS
users.

3.4 Why do MIS users consume more energy?

This basic descriptive fact in our data seems to contradict the conventional wisdom that MIS is a
resource-conserving technology. How can this be? We propose three candidate explanations:

1. Non-conservation: Regardless of whether it saves water, MIS actually takes more energy
than traditional irrigation to irrigate the same crops under real-world conditions.
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2. Rebound effects: MIS conserves water and/or energy, allowing its users to grow more
crops and irrigate more area than they otherwise would.

3. Selection bias: MIS users are fundamentally different from non-users in any number of
ways – perhaps they use different farming methods or have better access to water – and so
comparing their raw data is not useful.

The rest of our analysis attempts to distinguish between these three potential explanations.

4 Effects of MIS via regression and matching

4.1 Methods

To learn how MIS affects energy use and whether there are any rebound effects, we would like to
know what MIS users would have done had they not adopted MIS. This is impossible, so instead
we need to try to construct a group of non-users of MIS that are very similar to the MIS users in
all other ways, so that they form a plausible comparison group.

To reduce selection bias, we apply regression and matching techniques. These methods
can help adjust for observed differences between the groups of MIS users and non-users, re-
weighting group members in order to construct two groups that are as similar as possible except
for the fact that one uses MIS and the other does not. However, no matter how comprehensive
the set of observed control variables, the possibility remains that there are additional unobserved
factors that are different between MIS users and non-users. After all, there was a reason that some
farmers chose to adopt MIS and others did not. Because we cannot fully eliminate selection bias,
the results here can be interpreted only as correlational rather than causal.

Regression. Our regression specifications take the form:

Energyi = α + βMISi + X′
iΠ + εi

where Energyi is the average per-month energy consumption measured for the metered well of
farmer i, MISi is a binary variable indicating whether farmer i used MIS on their primary farm,
and Xi is a set of covariates. Standard errors are calculated using the Huber-White heteroskedasticity-
consistent estimator.

Although our baseline survey provides us with a large set of possible covariates, selecting
them is not completely straightforward. Many characteristics of farming, cropping, and irriga-
tion patterns are likely determined after the decision of whether to adopt MIS. These may actually
be outcome variables – channels through which the effects of MIS operate. Therefore, the best
controls are pre-treatment variables – those that are unlikely to be affected by MIS adoption. We
form several groups of control variables that we refer to throughout the analysis. They are:

• Village fixed effects: Binary indicators for each of the 44 villages in our sample.

• Agricultural controls: Total area of primary farm; whether the farm is larger than two
hectares; whether the metered well is a borewell; number of active wells on the primary
farm; whether wells on primary farm also irrigate any other farms; whether farm uses wa-
ter from wells on other farms; rated brake horsepower of the electric pump on the primary
well.
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• Economic controls: Whether household has a pucca floor; whether household has a pucca
roof, whether household is electrified; whether household has a private water tap; number
of cattle or buffalo; number of bullocks; number of pieces of mechanized farm equipment;
whether household earned agricultural income from own land; whether household earned
agricultural income from rented land; whether household earned sharecropping income;
whether household earned labor income; whether household earned business income out-
side of the farm.

• Demographic controls: Number of people in the household; whether household identi-
fies as Hindu; whether household identifies as SC/ST/OBC, whether head of household
is literate, whether head of household has any formal education; whether head of house-
hold has primary or secondary education; whether head of household has post-secondary
education.

In addition to these, we form one group of controls that may violate the principle of choosing only
pre-treatment variables. We include these variables in some specifications despite this because
they might be especially crucial in explaining the differences in pumping amounts.

• Behavioral controls: Whether grew cotton; depth to water in metered well; inverse depth
to water in metered well.

Results using this group of control variables should be interpreted with the understanding that
these variables may block off some channels of the effects of MIS.

Matching. We also apply matching methods that estimate treatment effects by forming explicit
matches between observations in our data. For each farmer with MIS, these methods attempt to
locate the farmer or farmers without MIS who are otherwise most similar, according to our survey
variables. Regression implicitly makes the same sorts of comparisons but also relies on linear
extrapolation; matching makes the comparisons explicit and better enforces that they actually
take similar values between MIS and non-MIS farmers (i.e., common support).

The variables we use for matching are the same sets of variables as listed above for regres-
sion covariates. We use two matching methods: nearest neighbor and kernel matching. Both are
based on Mahalanobis distance matching, which calculates the pairwise similarity of observa-
tions across all matching variables in a way that takes into account the variance and covariance
of each of the variables (Elizabeth A. Stuart, 2010). The difference between the two methods is
that nearest neighbor matching compares each MIS farmer to the single non-MIS farmer with the
closest Mahalanobis distance, while kernel matching compares each MIS farmer to all non-MIS
farmers within a fixed Mahalanobis distance, called a kernel. The number of farmers within this
kernel may be one, zero, or multiple.

4.2 Results

Table 3, Panel A reports coefficients from regressing the natural log of energy consumption on
MIS use, along with different sets of control variables. Column 1 shows that the coefficient with
no control variables is 0.375, indicating that the raw mean of energy consumption is approxi-
mately 38 percent higher for MIS users than for non-users of MIS. This coefficient is numerically
equal to the difference in log means shown in Table 2. It is significantly different from zero at a
95 percent confidence level.
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Columns 2-5 show the coefficients from including each group of control variables listed above
(village fixed effects, agricultural, economic, and demographic controls), while column 6 shows
the coefficient from a regression that includes all four groups of controls. Column 7 implements
the post-double-selection Lasso methodology of Belloni et al. (2017). This method guards against
model overfitting in the presence of many control variables by selecting only the subset of con-
trols that are most relevant in predicting either the outcome variable (energy consumption) or the
independent variable of interest (MIS use). Finally, column 8 uses the “behavioral” set of controls
which risk blocking some channels of the effects of MIS.

Across all of these specifications, the coefficient on MIS use is stable, ranging only between
0.340 and 0.471 and remaining statistically significant. Because the outcome is in natural logs,
these coefficients are semi-elasticities, meaning they can be interpreted as percentage changes.
Users of MIS still use 35 to 50 percent more energy than non-users, even after adjusting for a
barrage of controls that describe the farm (including land area, water sources, and water avail-
ability as measured by water depth), a rich set of household characteristics (including many
demographic and socioeconomic measures), and any unobserved factors that are common to a
particular village (captured by the village fixed effects).

MIS users appear to consume more energy in total, but what about energy per hectare? Panel
B of Table 3 reports estimated coefficients from the same regression specifications described
above, except that the dependent variable is energy use per hectare cultivated. These results
show that, even on a per-hectare basis, MIS users still consume 27 to 50 percent more energy
than non-users. In some specifications (columns 1-5 and 8), the estimated effect of MIS is a bit
smaller, with slightly larger standard errors. However, in the regressions with the full and Lasso-
selected sets of controls (columns 6-7), the effect is at least as large as in Panel A and statistically
significant. None of the estimates for log energy per hectare are statistically different from their
counterparts for log energy.

Turning to the matching approach, Table 4 reports average treatment effects estimated us-
ing matching methods. Columns 1-3 show the estimates from nearest-neighbor matching, while
columns 4-6 show the estimates from kernel matching. Within each of these groups, the first
column includes the agricultural, economic, and demographic controls, the second column adds
village fixed effects, and the third column matches on the possibly endogenous behavioral con-
trols. The effect of MIS on log energy consumption (Panel A) is approximately 40 to 50 percent
across all of these specifications. These effects are larger than the estimates produced using re-
gression, and they are all statistically significant. The effect on MIS on log energy consumption
per cultivated area (Panel B) appear slightly smaller and noisier, just as in the regression results,
but again they are not statistically different from the Panel A results.

The fact that the effects are of a similar magnitude when examining energy consumption on
a per-hectare basis suggests that there is little evidence for a rebound effect. The rebound effect
hypothesis holds that MIS use conserve resources on a per-hectare basis, encouraging farmers to
expand production. If this were true, the effects of MIS on energy consumed per unit area would
be smaller than the effect on total energy consumed. Our results suggest that increased cropping
area does not explain the observed fact that MIS users consume more energy.

4.2.1 Water availability as an unobserved factor

The evidence from both regression and matching methods suggests that selection, at least on
observed characteristics, is not responsible for the difference between users and non-users of
MIS. If anything, the estimated difference is larger after adjusting for a large number of farm
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OLS Regressions of Energy Consumption on MIS Use and Controls

(1) (2) (3) (4) (5) (6) (7) (8)

A. Log Energy Consumption

Used MIS 0.375∗∗ 0.372∗∗ 0.352∗∗ 0.378∗∗ 0.389∗∗ 0.471∗∗∗ 0.436∗∗∗ 0.340∗

[0.164] [0.159] [0.163] [0.163] [0.166] [0.179] [0.169] [0.173]

R2 0.014 0.248 0.243 0.039 0.057 0.416 0.161

Observations 391 387 330 391 390 325 330 329

B. Log Energy Consumption per Hectare Cultivated

Used MIS 0.272 0.329∗ 0.299∗ 0.290 0.300∗ 0.500∗∗ 0.440∗∗ 0.301
[0.180] [0.185] [0.178] [0.182] [0.181] [0.201] [0.193] [0.190]

R2 0.007 0.219 0.198 0.032 0.047 0.419 0.134

Observations 361 358 304 361 361 300 304 303

Controls: Village FEs X X X
Agricultural X X X
Economic X X X
Demographic X X X
Behavioral X

Lasso selection X

Table 3: Usage of micro-irrigation systems (MIS) and energy consumption.

Note: This table displays regressions of energy consumption and energy consumption per hectare cultivated
on a dummy for whether the farmer uses MIS. Robust standard errors are in brackets. Significance levels: *
10%, ** 5%, *** 1%.

and household characteristics. However, it remains possible that users and non-users of MIS are
different in ways that our survey variables do not capture.

What are these unobserved characteristics that might explain the large differences across
farmers in irrigation amounts? The farmers in our sample are nearly all growing the same crop
(cotton), share social networks, and have access to very similar input and output markets, so they
are unlikely to be taking dramatically different approaches to agricultural production. Informa-
tion and education about optimal irrigation practices could be a factor, but anecdotally, NGOs
and extension services are widespread in our study region, and farmers often insist they know
how much water they should be applying to their crops.

Instead, the most obvious factor is water availability: some farms simply have better ground-
water availability than others. The hydrogeology of our study region is complex and it is often
difficult to predict where drilling a well will yield abundant water, or which areas have intercon-
nected aquifers. Our list of “behavioral controls” includes measured depth to groundwater level,
but this is likely an imperfect proxy since water availability is not just about water level but also
how quickly the well fills back up after pumping.

Another way we can try to adjust for water availability is by making comparisons only among
farmers whose well did not go dry during the period of meter reading. This is also an imperfect
proxy, but it at least allows us to exclude the most egregious cases, in which water availability
was so poor that the well went completely dry at some point. A caveat is that a well going dry
may itself be endogenous: if MIS conserves water, MIS users will be less likely to find their well
dry. Farmers remaining in the sample are either MIS users or MIS non-users who pumped less,
introducing an artificial positive correlation between using MIS and pumping more. Still, we
think this comparison is worth considering, since it might help to reduce selection bias in water
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Mahalanobis Distance Matching Regressions of Energy Consumption on MIS Use

(1) (2) (3) (4) (5) (6)

A. Log Energy Consumption

main
Used MIS 0.507∗∗ 0.519∗∗ 0.494∗∗ 0.461∗∗∗ 0.453∗∗ 0.328∗∗

[0.201] [0.231] [0.211] [0.157] [0.195] [0.163]

R2

Observations 390 390 329 390 390 329

B. Log Energy Consumption per Hectare Cultivated

main
Used MIS 0.406∗ 0.467∗ 0.410∗ 0.337∗ 0.356 0.278

[0.215] [0.267] [0.234] [0.189] [0.246] [0.178]

R2

Observations 361 361 303 361 361 303

Match variables: Village FEs X X
Agricultural X X X X
Economic X X X X
Demographic X X X X
Behavioral X X

Matching algorithm nearest-
neighbor

nearest-
neighbor

nearest-
neighbor kernel kernel kernel

Table 4: Impact of micro-irrigation systems (MIS) on energy consumption: Matching estimates.

Note: This table displays matching-estimates of the impact of MIS use on energy consumption and energy
consumption per hectare cultivated. Robust standard errors are in brackets. Significance levels: * 10%, **
5%, *** 1%.
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availability.
Tables 5-6 present the same results from regression and matching as Tables 3-4, but for the sub-

sample of farmers whose wells did not go dry during the study period. Regression coefficients
reported in Table 5 tend to be smaller than for the full sample, for both log energy consump-
tion and log energy consumption per hectare. Matching estimates reported in Table 6 are also
smaller for kernel matching but volatile for nearest-neighbor matching. Because this sample is
smaller than the full sample, the standard errors are larger for all of these estimates. This means
that we cannot statistically distinguish most of these estimates from a zero effect, nor can we
distinguish them from the results for the full sample. Evidence from this sub-sample is therefore
inconclusive.

OLS Regressions of Energy Consumption on MIS Use and Controls: Farmers whose wells do not dry

(1) (2) (3) (4) (5) (6) (7) (8)

A. Log Energy Consumption

Used MIS 0.218 0.291 0.118 0.242 0.211 0.189 0.276 0.219
[0.225] [0.229] [0.197] [0.229] [0.233] [0.224] [0.205] [0.202]

R2 0.004 0.241 0.215 0.033 0.064 0.396 0.153

Observations 248 245 248 248 248 245 248 247

B. Log Energy Consumption per Hectare Cultivated

Used MIS 0.192 0.283 0.133 0.277 0.205 0.354 0.406∗ 0.208
[0.245] [0.260] [0.220] [0.239] [0.254] [0.233] [0.241] [0.224]

R2 0.003 0.248 0.158 0.040 0.028 0.427 0.148

Observations 226 223 226 226 226 223 226 225

Controls: Village FEs X X X
Agricultural X X X
Economic X X X
Demographic X X X
Behavioral X

Lasso selection X

Table 5: Usage of micro-irrigation systems (MIS) and energy consumption for farmers with plentiful water.

Note: This table displays regressions of energy consumption and energy consumption per hectare cultivated
on a dummy for whether the farmer uses MIS. The sample is limited to farmers whose wells do not go dry
for the full season, and therefore have access to plentiful water. Robust standard errors are in brackets.
Significance levels: * 10%, ** 5%, *** 1%.

5 Effects of MIS via regression discontinuity

Another way we can try to rule out selection bias from unobserved factors is by looking for a nat-
ural experiment. In this section, we explore one possible natural experiment for MIS adoption.
Farmers in Gujarat have faced different prices for MIS over the last decade, with eligibility for
higher subsidies beginning at a sharp discontinuity in land area. Since 2007, the Government of
Gujarat has heavily subsidized MIS. For most of this period, the subsidy has been set at 50% of
the purchase price for farmers with more than two hectares of land and 60% for farmers with less
than two hectares of land; these amounts were later increased to 60% and 70%. If the price differ-
ence introduced by this policy generated a discontinuous jump in probability of adoption at the
two- hectare cutoff, it would set the stage for a regression discontinuity approach to understand-
ing the impacts of MIS. In particular, because farmers just below and above the two-hectare farm
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Mahalanobis Distance Matching Regressions of Energy Consumption on MIS Use:
Farmers whose wells do not dry

(1) (2) (3) (4) (5) (6)

A. Log Energy Consumption

main
Used MIS 0.284 0.836 0.255 0.332 0.263 0.280∗

[0.271] [0.553] [0.197] [0.223] [0.301] [0.155]

R2

Observations 248 248 247 248 248 247

B. Log Energy Consumption per Hectare Cultivated

main
Used MIS 0.179 0.982 0.109 0.320 0.268 0.204

[0.281] [0.608] [0.197] [0.283] [0.293] [0.204]

R2

Observations 226 226 225 226 226 225

Match variables: Village FEs X X
Agricultural X X X X
Economic X X X X
Demographic X X X X
Behavioral X X

Matching algorithm nearest-
neighbor

nearest-
neighbor

nearest-
neighbor kernel kernel kernel

Table 6: Impact of micro-irrigation systems (MIS) on energy consumption: Matching estimates for farmers with
plentiful water.

Note: This table displays matching-estimates of the impact of MIS use on energy consumption and energy
consumption per hectare cultivated. The sample is limited to farmers whose wells do not go dry for the full
season, and therefore have access to plentiful water. Robust standard errors are in brackets. Significance
levels: * 10%, ** 5%, *** 1%.
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size cutoff would be identical but for an infinitesimal difference in farm size, any discontinuous
change in energy use between farmers at the cutoff could be causally attributed to the additional
MIS adoption caused by the discontinuous subsidy schedule.

Unfortunately for our analysis, there is no evidence that the higher subsidy amount for farm-
ers below the two-hectare cutoff has led to increased adoption of MIS. Panel (a) of Figure 3 plots
the share of farmers adopting MIS at different farm size bins in blue. MIS adoption is not sig-
nificantly higher just below two hectares; in fact, if anything, the share of farmers using MIS is
slightly lower below the cut-off. Consistent with the finding in Section 4.2 that increased MIS
adoption is associated with increased energy utilization, Panel (b) of Figure 3 shows that energy
use also decreases slightly below the two hectare cutoff; however, this decrease is also statistically
indistinguishable from zero.

Why might this be? It is likely that the failure to find a discontinuity at the cutoff is simply
due to insufficient data. The histogram of farm size in Figure 3 (in orange) shows that very few
farmers in our sample have farms less than two hectares. It may also be that the increased subsidy
amounts was too small to induce large variation in MIS adoption. More data from farmers near
the two-hectare cut-off will be necessary to assess whether an regression discontinuity design
can be used to estimate the causal impacts of MIS.

(a) MIS usage by farm size (b) Energy consumption by farm size

Figure 3: MIS and energy use above and below 2 hectares

Note: Figures overlay binscatter plots of MIS and energy usage according to farm size in blue on farm size
histograms in orange. Panel (a) illustrates the failure of the first stage of a regression discontinuity design:
the discontinuous increase in MIS price at 2 hectares is not associated with a discontinuous decrease in MIS
usage. Panel (b) shows the reduced form impact of the MIS price discontinuity on energy use, and again
finds no evidence of a discontinuity at 2 hectares. The histograms show that in our data, the number of
farmers with farms near the 2 hectare cutoff is limited.

6 Policy implications and conclusion

By combining direct meter-based measurements of groundwater pumping with comprehensive
survey data, we provide a unique description of energy use patterns among smallholder farmers
in a water-scarce region of Gujarat. We find two basic facts that are striking. First, energy use
varies widely across farmers, a pattern that does not appear to be explained by other observed
factors such as crop area. Second, micro-irrigation (MIS) users in our sample consume 30 to 40
percent more water than non-users of MIS. This contrasts with the conventional wisdom on MIS,
which holds that water savings should translate to energy savings. We propose three hypotheses
that might explain this basic fact: non-conservation (MIS does not actually reduce energy for the
same crop), rebound effects, and selection bias.
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We find little evidence for selection bias. The large difference in energy consumption by irri-
gation technology persists even after adjusting for farm size, well depth, pump power, other farm
and water access descriptors, and a wide range of socioeconomic and demographic characteris-
tics. Not only does a difference remain after adjusting for all these factors, its size changes little
across specifications. This stability is an indirect test of the influence of other unobserved factors:
if the estimated magnitude is not sensitive to observed factors that are likely to be important, it
suggests that it also might be robust to unobserved factors. It remains possible that unobserved
factors might be confounding the relationship between MIS use and energy consumption, but it
is difficult to think of such factors that could make up for such a large difference.

We also find little evidence for a rebound effect for MIS. If there is a rebound effect, the effect of
MIS on total energy consumption should be larger than the effect of MIS on energy consumption
per hectare cultivated. This is true in some of our specifications, but not all. We are unable to
statistically distinguish the two effects in any specification, but this could mean either that there
truly is no difference, or that there is in fact a difference but we do not have enough data to
confirm it.

The absence of evidence for either selection bias or rebound effects suggests that there is a
real possibility that MIS actually does not save energy in a real-world setting. This could be
true if farmers are not operating their systems according to best practices, resulting in over-
pressurization, or if they are using pumps that are too powerful for their MIS system. This
conclusion would be consistent with at some evidence in the prior literature (Fishman et al.,
2015).

Further research is needed to more definitively understand the effects of MIS on energy con-
sumption and whether there is a rebound effect. An improved study design would track farmers
over several years so that energy consumption could be compared for the same farmer before and
after adoption of MIS. So far this has been difficult to implement since very few farmers adopt
MIS in any given year. The best approach would be to conduct a controlled trial that randomly
offers free MIS technology to farmers, but this would be expensive and it may still be difficult to
reach a high take-up rate. Absent these kinds of studies, our analysis provides some suggestive
evidence that the energy impacts of MIS under real-world conditions may be disappointing.

If it is true that MIS adoption actually increases energy consumption, this result would carry
several implications for policy. First, government subsidies for MIS adoption may be a less attrac-
tive investment than previously thought. MIS likely provides multiple benefits to farmers, from
higher yields to conserved groundwater, but the extent to which energy efficiency can justify
subsidies may need to be reassessed. Second, if improving energy efficiency is an explicit policy
goal, it may need to be pursued through more direct policy tools such as metering, volumetric
pricing, and/or tiered energy tariffs.

Third, it may be worthwhile to increase funding for training and extension services. If energy
consumption goes up after adopting MIS, it may indicate that the systems are being installed
without appropriate complementary technologies, such as updated pumps and pressure regu-
lators, or are maintained incorrectly. Providing greater access to complementary technologies
as well as ongoing education and maintenance services might improve the chances that farmers
enjoy the full benefits of the new technology.

Finally, there is a need for more detailed, quantitative monitoring of energy efficiency and re-
source consumption in real-world settings. Our relatively small endeavor has yielded one result
with potentially unexpected consequences. More widespread and longer-term measurements of
energy and water consumption are critical for policymakers and stakeholders to understand the
reality of the situation on the ground and to guide appropriate policy responses.
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